The example code.
~~~rust
use clap::{App, Arg};
fn main() {
let matches = App::new("My Super Program")
.arg(
Arg::with_name("verbose")
.help("Sets the level of verbosity")
.short('v')
.long("verbose")
.takes_value(false)
.multiple_occurrences(true)
.env("VERBOSE"),
)
.get_matches();
match matches.occurrences_of("verbose") {
0 => println!("0 No verbose info"),
1 => println!("1 Some verbose info"),
2 => println!("2 Tons of verbose info"),
3 | _ => println!("3 >= Don't be crazy"),
}
}
~~~
It code use multiple_occurrences with env.
But it do not work.
`env` method set require take value.
It result see under.
~~~console
% cargo run -- -v
Finished dev [unoptimized + debuginfo] target(s) in 0.01s
Running `target/debug/foo -v`
error: The argument '--verbose <verbose>...' requires a value but none was supplied
USAGE:
foo [OPTIONS]
For more information try --help
~~~
And, structopt or clap_derive may be create similar code.
So I am confused by structopt.
This to fix code small.
This quotes all field names in errors. It makes easier for humans to
disambiguate common network-related cases which currently end up in
messages like "address is already in use".
The lack of qualification caused odd errors such as:
```
use clap;
let foo = clap::value_t!(matches.value_of("foo"),i u32).unwrap(); # OK
lot bar = clap::value_t!(matches, "bar", u32).unwrap(); # Compile fail
```
but
```
use clap::value_t;
let foo = value_t!(matches.value_of("foo"),i u32).unwrap(); # OK
lot bar = value_t!(matches, "bar", u32).unwrap(); # OK
```
- Manually fix some problems
- Run 'cargo fix --clippy'
Commits taken from similar PRs open at that time:
- Replace indexmap remove with swap_remove
Resolves#1562 and closes#1563
- Use cognitive_complexity for clippy lint
Resolves#1564 and closes#1565
- Replace deprecated trim_left_matches with trim_start_matches
Closes#1539
Co-authored-by: Antoine Martin <antoine97.martin@gmail.com>
Co-authored-by: Brian Foley <bpfoley@users.noreply.github.com>
This patch:
* Removes the `ArgSettings::Global` variant, and replaces all
users of it to `Arg::global(...)`. The variant itself is lifted up
into a field on Arg. This was deprecated in clap 2.32.0.
* Removes AppFlags::PropagateGlobalValuesDown. This was deprecated in
clap 2.27.0.
* Removes `Arg::empty_values`. This was deprecated in clap 2.30.0.
* Removes `ArgMatches::usage`. This was deprecated in clap 2.32.0.
subcommands
This commit changes the internal ID to a u64 which will allow for
greater optimizations down the road. In addition, it lays the ground
work for allowing users to use things like enum variants as argument
keys instead of strings.
The only downside is each key needs to be hashed (the implementation
used is an FNV hasher for performance). However, the performance gains
in faster iteration, comparison, etc. should easily outweigh the single
hash of each argument.
Another benefit of if this commit is the removal of several lifetime
parameters, as it stands Arg and App now only have a single lifetime
parameter, and ArgMatches and ArgGroup have no lifetime parameter.
The return value is only used in the error case, and only a single
String allocation, therefore the complexities introduced by using string
slices isn't worth it. clap primarily only needs to be as fast as
possible in the happy path, the error path can afford additional
allocations.
The return value is only used in the error case, and only a single
String allocation, therefore the complexities introduced by using string
slices isn't worth it. clap primarily only needs to be as fast as
possible in the happy path, the error path can afford additional
allocations.
Makes the validator functions more flexible by changing the return
type from Result<(), String> to Result<O, E> where O is anything
and E is anything convertible to a String.
This allows, for example, using the same function for validating
and parsing your argument.
Breaking change (albeit tiny) due to function signature change.
Args can now be added to custom help sections. This breaks up the builder pattern a little by adding help section declarations inline, but it's the most intuitive method and doesn't require strange nesting that feels awkward.
```rust
app::new("foo")
.arg(Arg::with_name("arg1")) // under normal headers
.help_heading("SPECIAL")
.arg(Arg::with_name("arg2")) // under SPECIAL: heading
```
Closes#805
Add logic to filter based on hidden long/short.
There is still an issue with the logic in parser.rs use_long_help. This
causes invalid evaluation of whether to show/hide based on long or short help
Complete check for use_long_help, add tests
Once can now mutate an Arg instance after it's already been added to an App struct.
This is helpful when you wish to add all the args in an non-verbose way, such as
via the usage strings, but wish for a handful to have settings which arne't posible
in the usage string definitions.
Adds the abiltiy to query the matches struct for the indices of values or flags. The index
is similar to that of an argv index, but not exactly a 1:1.
For flags (i.e. those arguments which don't have an associated value), indices refer
to occurrence of the switch, such as `-f`, or `--flag`. However, for options the indices
refer to the *values* `-o val` would therefore not represent two distinct indices, only the
index for `val` would be recorded. This is by design.
Besides the flag/option descrepancy, the primary difference between an argv index and clap
index, is that clap continues counting once all arguments have properly seperated, whereas
an argv index does not.
The examples should clear this up.
*NOTE:* If an argument is allowed multiple times, this method will only give the *first*
index.
The argv indices are listed in the comments below. See how they correspond to the clap
indices. Note that if it's not listed in a clap index, this is becuase it's not saved in
in an `ArgMatches` struct for querying.
```rust
let m = App::new("myapp")
.arg(Arg::with_name("flag")
.short("f"))
.arg(Arg::with_name("option")
.short("o")
.takes_value(true))
.get_matches_from(vec!["myapp", "-f", "-o", "val"]);
// ARGV idices: ^0 ^1 ^2 ^3
// clap idices: ^1 ^3
assert_eq!(m.index_of("flag"), Some(1));
assert_eq!(m.index_of("option"), Some(3));
```
Now notice, if we use one of the other styles of options:
```rust
let m = App::new("myapp")
.arg(Arg::with_name("flag")
.short("f"))
.arg(Arg::with_name("option")
.short("o")
.takes_value(true))
.get_matches_from(vec!["myapp", "-f", "-o=val"]);
// ARGV idices: ^0 ^1 ^2
// clap idices: ^1 ^3
assert_eq!(m.index_of("flag"), Some(1));
assert_eq!(m.index_of("option"), Some(3));
```
Things become much more complicated, or clear if we look at a more complex combination of
flags. Let's also throw in the final option style for good measure.
```rust
let m = App::new("myapp")
.arg(Arg::with_name("flag")
.short("f"))
.arg(Arg::with_name("flag2")
.short("F"))
.arg(Arg::with_name("flag3")
.short("z"))
.arg(Arg::with_name("option")
.short("o")
.takes_value(true))
.get_matches_from(vec!["myapp", "-fzF", "-oval"]);
// ARGV idices: ^0 ^1 ^2
// clap idices: ^1,2,3 ^5
//
// clap sees the above as 'myapp -f -z -F -o val'
// ^0 ^1 ^2 ^3 ^4 ^5
assert_eq!(m.index_of("flag"), Some(1));
assert_eq!(m.index_of("flag2"), Some(3));
assert_eq!(m.index_of("flag3"), Some(2));
assert_eq!(m.index_of("option"), Some(5));
```
One final combination of flags/options to see how they combine:
```rust
let m = App::new("myapp")
.arg(Arg::with_name("flag")
.short("f"))
.arg(Arg::with_name("flag2")
.short("F"))
.arg(Arg::with_name("flag3")
.short("z"))
.arg(Arg::with_name("option")
.short("o")
.takes_value(true)
.multiple(true))
.get_matches_from(vec!["myapp", "-fzFoval"]);
// ARGV idices: ^0 ^1
// clap idices: ^1,2,3^5
//
// clap sees the above as 'myapp -f -z -F -o val'
// ^0 ^1 ^2 ^3 ^4 ^5
assert_eq!(m.index_of("flag"), Some(1));
assert_eq!(m.index_of("flag2"), Some(3));
assert_eq!(m.index_of("flag3"), Some(2));
assert_eq!(m.index_of("option"), Some(5));
```
The last part to mention is when values are sent in multiple groups with a [delimiter].
```rust
let m = App::new("myapp")
.arg(Arg::with_name("option")
.short("o")
.takes_value(true)
.multiple(true))
.get_matches_from(vec!["myapp", "-o=val1,val2,val3"]);
// ARGV idices: ^0 ^1
// clap idices: ^2 ^3 ^4
//
// clap sees the above as 'myapp -o val1 val2 val3'
// ^0 ^1 ^2 ^3 ^4
assert_eq!(m.index_of("option"), Some(2));
```
For version 3, we want the args section to immediately follow
the usage section in the default help message.
One change that I am unhappy with is needing to make "write_arg"
in app/help.rs accept an extra param that makes it suppress the
extra line. This is to prevent an extra blank line from appearing
between args and options in the default help, and seems necessary,
but there might be a better way.