bottom/src/canvas.rs

1055 lines
31 KiB
Rust

use crate::{
app, constants,
data_conversion::{ConvertedCpuData, ConvertedProcessData},
utils::{error, gen_util::*},
};
use std::cmp::max;
use tui::{
backend,
layout::{Alignment, Constraint, Direction, Layout, Rect},
style::{Color, Modifier, Style},
terminal::Frame,
widgets::{Axis, Block, Borders, Chart, Dataset, Marker, Paragraph, Row, Table, Text, Widget},
Terminal,
};
const TEXT_COLOUR: Color = Color::Gray;
const GRAPH_COLOUR: Color = Color::Gray;
const BORDER_STYLE_COLOUR: Color = Color::Gray;
const HIGHLIGHTED_BORDER_STYLE_COLOUR: Color = Color::LightBlue;
const GOLDEN_RATIO: f32 = 0.618_034; // Approx, good enough for use (also Clippy gets mad if it's too long)
// Headers
const CPU_LEGEND_HEADER: [&str; 2] = ["CPU", "Use%"];
const DISK_HEADERS: [&str; 7] = ["Disk", "Mount", "Used", "Free", "Total", "R/s", "W/s"];
const TEMP_HEADERS: [&str; 2] = ["Sensor", "Temp"];
const NON_WINDOWS_NETWORK_HEADERS: [&str; 4] = ["RX", "TX", "Total RX", "Total TX"];
const WINDOWS_NETWORK_HEADERS: [&str; 2] = ["RX", "TX"];
const FORCE_MIN_THRESHOLD: usize = 5;
lazy_static! {
static ref HELP_TEXT: [Text<'static>; 15] = [
Text::raw("\nGeneral Keybindings\n"),
Text::raw("Ctrl-q, Ctrl-c to quit.\n"),
Text::raw("Ctrl-r to reset all data.\n"),
Text::raw("f to toggle freezing and unfreezing the display.\n"),
Text::raw(
"Ctrl-Up/Ctrl-k, Ctrl-Down/Ctrl-j, Ctrl-Left/Ctrl-h, Ctrl-Right/Ctrl-l to navigate between widgets.\n"
),
Text::raw("Up/k and Down/j scrolls through a list.\n"),
Text::raw("Esc to close a dialog window (help or dd confirmation).\n"),
Text::raw("? to get this help screen.\n"),
Text::raw("\n Process Widget Keybindings\n"),
Text::raw("dd to kill the selected process.\n"),
Text::raw("c to sort by CPU usage.\n"),
Text::raw("m to sort by memory usage.\n"),
Text::raw("p to sort by PID.\n"),
Text::raw("n to sort by process name.\n"),
Text::raw("`Tab` to group together processes with the same name.\n")
];
static ref COLOUR_LIST: Vec<Color> = gen_n_colours(constants::NUM_COLOURS);
static ref CANVAS_BORDER_STYLE: Style = Style::default().fg(BORDER_STYLE_COLOUR);
static ref CANVAS_HIGHLIGHTED_BORDER_STYLE: Style =
Style::default().fg(HIGHLIGHTED_BORDER_STYLE_COLOUR);
static ref DISK_HEADERS_LENS: Vec<usize> = DISK_HEADERS
.iter()
.map(|entry| max(FORCE_MIN_THRESHOLD, entry.len()))
.collect::<Vec<_>>();
static ref CPU_LEGEND_HEADER_LENS: Vec<usize> = CPU_LEGEND_HEADER
.iter()
.map(|entry| max(FORCE_MIN_THRESHOLD, entry.len()))
.collect::<Vec<_>>();
static ref TEMP_HEADERS_LENS: Vec<usize> = TEMP_HEADERS
.iter()
.map(|entry| max(FORCE_MIN_THRESHOLD, entry.len()))
.collect::<Vec<_>>();
static ref NON_WINDOWS_NETWORK_HEADERS_LENS: Vec<usize> = NON_WINDOWS_NETWORK_HEADERS
.iter()
.map(|entry| max(FORCE_MIN_THRESHOLD, entry.len()))
.collect::<Vec<_>>();
static ref WINDOWS_NETWORK_HEADERS_LENS: Vec<usize> = WINDOWS_NETWORK_HEADERS
.iter()
.map(|entry| max(FORCE_MIN_THRESHOLD, entry.len()))
.collect::<Vec<_>>();
}
#[derive(Default)]
pub struct CanvasData {
pub rx_display: String,
pub tx_display: String,
pub total_rx_display: String,
pub total_tx_display: String,
pub network_data_rx: Vec<(f64, f64)>,
pub network_data_tx: Vec<(f64, f64)>,
pub disk_data: Vec<Vec<String>>,
pub temp_sensor_data: Vec<Vec<String>>,
pub process_data: Vec<ConvertedProcessData>,
pub grouped_process_data: Vec<ConvertedProcessData>,
pub memory_labels: Vec<(u64, u64)>,
pub mem_data: Vec<(f64, f64)>,
pub swap_data: Vec<(f64, f64)>,
pub cpu_data: Vec<ConvertedCpuData>,
}
/// Generates random colours.
/// Strategy found from https://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/
fn gen_n_colours(num_to_gen: i32) -> Vec<Color> {
fn gen_hsv(h: f32) -> f32 {
let new_val = h + GOLDEN_RATIO;
if new_val > 1.0 {
new_val.fract()
} else {
new_val
}
}
/// This takes in an h, s, and v value of range [0, 1]
/// For explanation of what this does, see
/// https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative
fn hsv_to_rgb(hue: f32, saturation: f32, value: f32) -> (u8, u8, u8) {
fn hsv_helper(num: u32, hu: f32, sat: f32, val: f32) -> f32 {
let k = (num as f32 + hu * 6.0) % 6.0;
val - val * sat * float_max(float_min(k, float_min(4.1 - k, 1.1)), 0.0)
}
(
(hsv_helper(5, hue, saturation, value) * 255.0) as u8,
(hsv_helper(3, hue, saturation, value) * 255.0) as u8,
(hsv_helper(1, hue, saturation, value) * 255.0) as u8,
)
}
// Generate colours
let mut colour_vec: Vec<Color> = vec![
Color::LightCyan,
Color::LightYellow,
Color::Red,
Color::Green,
Color::LightMagenta,
];
let mut h: f32 = 0.4; // We don't need random colours... right?
for _i in 0..num_to_gen {
h = gen_hsv(h);
let result = hsv_to_rgb(h, 0.5, 0.95);
colour_vec.push(Color::Rgb(result.0, result.1, result.2));
}
colour_vec
}
pub fn draw_data<B: backend::Backend>(
terminal: &mut Terminal<B>, app_state: &mut app::App,
) -> error::Result<()> {
terminal.autoresize()?;
terminal.draw(|mut f| {
if app_state.show_help {
// Only for the help
let vertical_dialog_chunk = Layout::default()
.direction(Direction::Vertical)
.margin(1)
.constraints(
[
Constraint::Percentage(32),
Constraint::Percentage(40),
Constraint::Percentage(28),
]
.as_ref(),
)
.split(f.size());
let middle_dialog_chunk = Layout::default()
.direction(Direction::Horizontal)
.margin(0)
.constraints(
[
Constraint::Percentage(30),
Constraint::Percentage(40),
Constraint::Percentage(30),
]
.as_ref(),
)
.split(vertical_dialog_chunk[1]);
Paragraph::new(HELP_TEXT.iter())
.block(
Block::default()
.title("Help (Press Esc to close)")
.borders(Borders::ALL),
)
.style(Style::default().fg(Color::Gray))
.alignment(Alignment::Left)
.wrap(true)
.render(&mut f, middle_dialog_chunk[1]);
} else if app_state.show_dd {
let vertical_dialog_chunk = Layout::default()
.direction(Direction::Vertical)
.margin(1)
.constraints(
[
Constraint::Percentage(40),
Constraint::Percentage(20),
Constraint::Percentage(40),
]
.as_ref(),
)
.split(f.size());
let middle_dialog_chunk = Layout::default()
.direction(Direction::Horizontal)
.margin(0)
.constraints(
[
Constraint::Percentage(30),
Constraint::Percentage(40),
Constraint::Percentage(30),
]
.as_ref(),
)
.split(vertical_dialog_chunk[1]);
if let Some(dd_err) = app_state.dd_err.clone() {
let dd_text = [Text::raw(format!(
"\nFailure to properly kill the process - {}",
dd_err
))];
Paragraph::new(dd_text.iter())
.block(
Block::default()
.title("Kill Process Error (Press Esc to close)")
.borders(Borders::ALL),
)
.style(Style::default().fg(Color::Gray))
.alignment(Alignment::Center)
.wrap(true)
.render(&mut f, middle_dialog_chunk[1]);
} else if let Some(process_list) = app_state.get_current_highlighted_process_list() {
if let Some(process) = process_list.first() {
let dd_text = [
if app_state.is_grouped() {
Text::raw(format!(
"\nAre you sure you want to kill {} process(es) with name {}?",
process_list.len(), process.name
))
} else {
Text::raw(format!(
"\nAre you sure you want to kill process {} with PID {}?",
process.name, process.pid
))
},
Text::raw("\n\nPress ENTER to proceed, ESC to exit."),
Text::raw("\nNote that if bottom is frozen, it must be unfrozen for changes to be shown."),
];
Paragraph::new(dd_text.iter())
.block(
Block::default()
.title("Kill Process Confirmation (Press Esc to close)")
.borders(Borders::ALL),
)
.style(Style::default().fg(Color::Gray))
.alignment(Alignment::Center)
.wrap(true)
.render(&mut f, middle_dialog_chunk[1]);
} else {
app_state.show_dd = false;
}
} else {
// This is a bit nasty, but it works well... I guess.
app_state.show_dd = false;
}
} else {
let vertical_chunks = Layout::default()
.direction(Direction::Vertical)
.margin(1)
.constraints(
[
Constraint::Percentage(33),
Constraint::Percentage(34),
Constraint::Percentage(34),
]
.as_ref(),
)
.split(f.size());
let middle_chunks = Layout::default()
.direction(Direction::Horizontal)
.margin(0)
.constraints([Constraint::Percentage(60), Constraint::Percentage(40)].as_ref())
.split(vertical_chunks[1]);
let middle_divided_chunk_2 = Layout::default()
.direction(Direction::Vertical)
.margin(0)
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
.split(middle_chunks[1]);
let bottom_chunks = Layout::default()
.direction(Direction::Horizontal)
.margin(0)
.constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref())
.split(vertical_chunks[2]);
// Component specific chunks
let cpu_chunk = Layout::default()
.direction(Direction::Horizontal)
.margin(0)
.constraints(
if app_state.left_legend {
[Constraint::Percentage(15), Constraint::Percentage(85)]
} else {
[Constraint::Percentage(85), Constraint::Percentage(15)]
}
.as_ref(),
)
.split(vertical_chunks[0]);
let network_chunk = Layout::default()
.direction(Direction::Vertical)
.margin(0)
.constraints(
if app_state.left_legend {
[Constraint::Percentage(10), Constraint::Percentage(90)]
} else {
[Constraint::Percentage(75), Constraint::Percentage(10)]
}
.as_ref(),
)
.split(bottom_chunks[0]);
// Default chunk index based on left or right legend setting
let legend_index = if app_state.left_legend { 0 } else { 1 };
let graph_index = if app_state.left_legend { 1 } else { 0 };
// Set up blocks and their components
// CPU graph
draw_cpu_graph(&mut f, &app_state, cpu_chunk[graph_index]);
// CPU legend
draw_cpu_legend(&mut f, app_state, cpu_chunk[legend_index]);
//Memory usage graph
draw_memory_graph(&mut f, &app_state, middle_chunks[0]);
// Network graph
draw_network_graph(&mut f, &app_state, network_chunk[0]);
draw_network_labels(&mut f, app_state, network_chunk[1]);
// Temperature table
draw_temp_table(&mut f, app_state, middle_divided_chunk_2[0]);
// Disk usage table
draw_disk_table(&mut f, app_state, middle_divided_chunk_2[1]);
// Processes table
draw_processes_table(&mut f, app_state, bottom_chunks[1]);
}
})?;
Ok(())
}
fn draw_cpu_graph<B: backend::Backend>(f: &mut Frame<B>, app_state: &app::App, draw_loc: Rect) {
let cpu_data: &[ConvertedCpuData] = &app_state.canvas_data.cpu_data;
// CPU usage graph
let x_axis: Axis<String> = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]);
let y_axis = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([-0.5, 100.5])
.labels(&["0%", "100%"]);
let mut dataset_vector: Vec<Dataset> = Vec::new();
let mut cpu_entries_vec: Vec<(Style, Vec<(f64, f64)>)> = Vec::new();
for (i, cpu) in cpu_data.iter().enumerate() {
let mut avg_cpu_exist_offset = 0;
if app_state.show_average_cpu {
if i == 0 {
// Skip, we want to render the average cpu last!
continue;
} else {
avg_cpu_exist_offset = 1;
}
}
cpu_entries_vec.push((
Style::default().fg(COLOUR_LIST[(i - avg_cpu_exist_offset) % COLOUR_LIST.len()]),
cpu.cpu_data
.iter()
.map(<(f64, f64)>::from)
.collect::<Vec<_>>(),
));
}
if app_state.show_average_cpu {
if let Some(avg_cpu_entry) = cpu_data.first() {
cpu_entries_vec.push((
Style::default().fg(COLOUR_LIST[(cpu_data.len() - 1) % COLOUR_LIST.len()]),
avg_cpu_entry
.cpu_data
.iter()
.map(<(f64, f64)>::from)
.collect::<Vec<_>>(),
));
}
}
for cpu_entry in &cpu_entries_vec {
dataset_vector.push(
Dataset::default()
.marker(if app_state.use_dot {
Marker::Dot
} else {
Marker::Braille
})
.style(cpu_entry.0)
.data(&(cpu_entry.1)),
);
}
Chart::default()
.block(
Block::default()
.title("CPU")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Cpu => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.x_axis(x_axis)
.y_axis(y_axis)
.datasets(&dataset_vector)
.render(f, draw_loc);
}
fn draw_cpu_legend<B: backend::Backend>(
f: &mut Frame<B>, app_state: &mut app::App, draw_loc: Rect,
) {
let cpu_data: &[ConvertedCpuData] = &(app_state.canvas_data.cpu_data);
let num_rows = i64::from(draw_loc.height) - 5;
let start_position = get_start_position(
num_rows,
&(app_state.scroll_direction),
&mut app_state.previous_cpu_table_position,
app_state.currently_selected_cpu_table_position,
);
let sliced_cpu_data = (&cpu_data[start_position as usize..]).to_vec();
let mut stringified_cpu_data: Vec<Vec<String>> = Vec::new();
for cpu in sliced_cpu_data {
if let Some(cpu_data) = cpu.cpu_data.last() {
stringified_cpu_data.push(vec![
cpu.cpu_name.clone(),
format!("{:.0}%", cpu_data.usage.round()),
]);
}
}
let mut cpu_row_counter = 0;
let cpu_rows = stringified_cpu_data
.iter()
.enumerate()
.map(|(itx, cpu_string_row)| {
Row::StyledData(
cpu_string_row.iter(),
match app_state.current_application_position {
app::ApplicationPosition::Cpu => {
if cpu_row_counter
== app_state.currently_selected_cpu_table_position - start_position
{
cpu_row_counter = -1;
Style::default().fg(Color::Black).bg(Color::Cyan)
} else {
if cpu_row_counter >= 0 {
cpu_row_counter += 1;
}
Style::default().fg(COLOUR_LIST[itx % COLOUR_LIST.len()])
}
}
_ => Style::default().fg(COLOUR_LIST[itx % COLOUR_LIST.len()]),
},
)
});
// Calculate widths
let width = f64::from(draw_loc.width);
let width_ratios = vec![0.5, 0.5];
let variable_intrinsic_results =
get_variable_intrinsic_widths(width as u16, &width_ratios, &CPU_LEGEND_HEADER_LENS);
let intrinsic_widths: Vec<u16> =
((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec();
// Draw
Table::new(CPU_LEGEND_HEADER.iter(), cpu_rows)
.block(Block::default().borders(Borders::ALL).border_style(
match app_state.current_application_position {
app::ApplicationPosition::Cpu => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
},
))
.header_style(Style::default().fg(Color::LightBlue))
.widths(
&(intrinsic_widths
.into_iter()
.map(|calculated_width| Constraint::Length(calculated_width as u16))
.collect::<Vec<_>>()),
)
.render(f, draw_loc);
}
fn _draw_memory_table<B: backend::Backend>(
_f: &mut Frame<B>, _app_state: &app::App, _draw_loc: Rect,
) {
// TODO: Memory table to be made for basic mode
}
fn draw_memory_graph<B: backend::Backend>(f: &mut Frame<B>, app_state: &app::App, draw_loc: Rect) {
let mem_data: &[(f64, f64)] = &(app_state.canvas_data.mem_data);
let swap_data: &[(f64, f64)] = &(app_state.canvas_data.swap_data);
let memory_labels: &[(u64, u64)] = &(app_state.canvas_data.memory_labels);
let x_axis: Axis<String> = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]);
let y_axis = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([-0.5, 100.5]) // Offset as the zero value isn't drawn otherwise...
.labels(&["0%", "100%"]);
let mem_name = "RAM:".to_string()
+ &format!(
"{:3}%",
(mem_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64)
) + &format!(
" {:.1}GB/{:.1}GB",
memory_labels.first().unwrap_or(&(0, 0)).0 as f64 / 1024.0,
memory_labels.first().unwrap_or(&(0, 0)).1 as f64 / 1024.0
);
let swap_name: String;
let mut mem_canvas_vec: Vec<Dataset> = vec![Dataset::default()
.name(&mem_name)
.marker(if app_state.use_dot {
Marker::Dot
} else {
Marker::Braille
})
.style(Style::default().fg(COLOUR_LIST[0]))
.data(&mem_data)];
if !(&swap_data).is_empty() {
if let Some(last_canvas_result) = (&swap_data).last() {
if last_canvas_result.1 >= 0.0 {
swap_name = "SWP:".to_string()
+ &format!(
"{:3}%",
(swap_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64)
) + &format!(
" {:.1}GB/{:.1}GB",
memory_labels[1].0 as f64 / 1024.0,
memory_labels[1].1 as f64 / 1024.0
);
mem_canvas_vec.push(
Dataset::default()
.name(&swap_name)
.marker(if app_state.use_dot {
Marker::Dot
} else {
Marker::Braille
})
.style(Style::default().fg(COLOUR_LIST[1]))
.data(&swap_data),
);
}
}
}
Chart::default()
.block(
Block::default()
.title("Memory")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Mem => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.x_axis(x_axis)
.y_axis(y_axis)
.datasets(&mem_canvas_vec)
.render(f, draw_loc);
}
fn draw_network_graph<B: backend::Backend>(f: &mut Frame<B>, app_state: &app::App, draw_loc: Rect) {
let network_data_rx: &[(f64, f64)] = &(app_state.canvas_data.network_data_rx);
let network_data_tx: &[(f64, f64)] = &(app_state.canvas_data.network_data_tx);
let x_axis: Axis<String> = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([0.0, 600_000.0]);
let y_axis = Axis::default()
.style(Style::default().fg(GRAPH_COLOUR))
.bounds([-0.5, 30_f64])
.labels(&["0B", "1KiB", "1MiB", "1GiB"]);
Chart::default()
.block(
Block::default()
.title("Network")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Network => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.x_axis(x_axis)
.y_axis(y_axis)
.datasets(&[
Dataset::default()
.marker(if app_state.use_dot {
Marker::Dot
} else {
Marker::Braille
})
.style(Style::default().fg(COLOUR_LIST[0]))
.data(&network_data_rx),
Dataset::default()
.marker(if app_state.use_dot {
Marker::Dot
} else {
Marker::Braille
})
.style(Style::default().fg(COLOUR_LIST[1]))
.data(&network_data_tx),
])
.render(f, draw_loc);
}
fn draw_network_labels<B: backend::Backend>(
f: &mut Frame<B>, app_state: &mut app::App, draw_loc: Rect,
) {
let rx_display: String = app_state.canvas_data.rx_display.clone();
let tx_display: String = app_state.canvas_data.tx_display.clone();
let total_rx_display: String = app_state.canvas_data.total_rx_display.clone();
let total_tx_display: String = app_state.canvas_data.total_tx_display.clone();
// Gross but I need it to work...
let total_network = if cfg!(not(target_os = "windows")) {
vec![vec![
rx_display,
tx_display,
total_rx_display,
total_tx_display,
]]
} else {
vec![vec![rx_display, tx_display]]
};
let mapped_network = total_network.iter().map(|val| Row::Data(val.iter()));
// Calculate widths
let width_ratios: Vec<f64>;
let lens: &Vec<usize>;
let width = f64::from(draw_loc.width);
if cfg!(not(target_os = "windows")) {
width_ratios = vec![0.25, 0.25, 0.25, 0.25];
lens = &NON_WINDOWS_NETWORK_HEADERS_LENS;
} else {
width_ratios = vec![0.25, 0.25];
lens = &WINDOWS_NETWORK_HEADERS_LENS;
}
let variable_intrinsic_results =
get_variable_intrinsic_widths(width as u16, &width_ratios, lens);
let intrinsic_widths: Vec<u16> =
((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec();
// Draw
Table::new(
// TODO: [OPT] Feels like I can optimize this and avoid multiple to_vec calls?
if cfg!(not(target_os = "windows")) {
NON_WINDOWS_NETWORK_HEADERS.to_vec()
} else {
WINDOWS_NETWORK_HEADERS.to_vec()
}
.iter(),
mapped_network,
)
.block(Block::default().borders(Borders::ALL).border_style(
match app_state.current_application_position {
app::ApplicationPosition::Network => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
},
))
.header_style(Style::default().fg(Color::LightBlue))
.widths(
&(intrinsic_widths
.into_iter()
.map(|calculated_width| Constraint::Length(calculated_width as u16))
.collect::<Vec<_>>()),
)
.render(f, draw_loc);
}
fn draw_temp_table<B: backend::Backend>(
f: &mut Frame<B>, app_state: &mut app::App, draw_loc: Rect,
) {
let temp_sensor_data: &[Vec<String>] = &(app_state.canvas_data.temp_sensor_data);
let num_rows = i64::from(draw_loc.height) - 5;
let start_position = get_start_position(
num_rows,
&(app_state.scroll_direction),
&mut app_state.previous_temp_position,
app_state.currently_selected_temperature_position,
);
let sliced_vec: Vec<Vec<String>> = (&temp_sensor_data[start_position as usize..]).to_vec();
let mut temp_row_counter = 0;
let temperature_rows = sliced_vec.iter().map(|temp_row| {
Row::StyledData(
temp_row.iter(),
match app_state.current_application_position {
app::ApplicationPosition::Temp => {
if temp_row_counter
== app_state.currently_selected_temperature_position - start_position
{
temp_row_counter = -1;
Style::default().fg(Color::Black).bg(Color::Cyan)
} else {
if temp_row_counter >= 0 {
temp_row_counter += 1;
}
Style::default().fg(TEXT_COLOUR)
}
}
_ => Style::default().fg(TEXT_COLOUR),
},
)
});
// Calculate widths
let width = f64::from(draw_loc.width);
let width_ratios = [0.5, 0.5];
let variable_intrinsic_results =
get_variable_intrinsic_widths(width as u16, &width_ratios, &TEMP_HEADERS_LENS);
let intrinsic_widths: Vec<u16> =
((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec();
// Draw
Table::new(TEMP_HEADERS.iter(), temperature_rows)
.block(
Block::default()
.title("Temperatures")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Temp => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.header_style(Style::default().fg(Color::LightBlue))
.widths(
&(intrinsic_widths
.into_iter()
.map(|calculated_width| Constraint::Length(calculated_width as u16))
.collect::<Vec<_>>()),
)
.render(f, draw_loc);
}
fn draw_disk_table<B: backend::Backend>(
f: &mut Frame<B>, app_state: &mut app::App, draw_loc: Rect,
) {
let disk_data: &[Vec<String>] = &(app_state.canvas_data.disk_data);
let num_rows = i64::from(draw_loc.height) - 5;
let start_position = get_start_position(
num_rows,
&(app_state.scroll_direction),
&mut app_state.previous_disk_position,
app_state.currently_selected_disk_position,
);
let sliced_vec: Vec<Vec<String>> = (&disk_data[start_position as usize..]).to_vec();
let mut disk_counter = 0;
let disk_rows = sliced_vec.iter().map(|disk| {
Row::StyledData(
disk.iter(),
match app_state.current_application_position {
app::ApplicationPosition::Disk => {
if disk_counter == app_state.currently_selected_disk_position - start_position {
disk_counter = -1;
Style::default().fg(Color::Black).bg(Color::Cyan)
} else {
if disk_counter >= 0 {
disk_counter += 1;
}
Style::default().fg(TEXT_COLOUR)
}
}
_ => Style::default().fg(TEXT_COLOUR),
},
)
});
// Calculate widths
// TODO: Ellipsis on strings?
let width = f64::from(draw_loc.width);
let width_ratios = [0.2, 0.15, 0.13, 0.13, 0.13, 0.13, 0.13];
let variable_intrinsic_results =
get_variable_intrinsic_widths(width as u16, &width_ratios, &DISK_HEADERS_LENS);
let intrinsic_widths: Vec<u16> =
((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec();
// Draw!
Table::new(DISK_HEADERS.iter(), disk_rows)
.block(
Block::default()
.title("Disk")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Disk => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.header_style(
Style::default()
.fg(Color::LightBlue)
.modifier(Modifier::BOLD),
)
.widths(
&(intrinsic_widths
.into_iter()
.map(|calculated_width| Constraint::Length(calculated_width as u16))
.collect::<Vec<_>>()),
)
.render(f, draw_loc);
}
fn draw_processes_table<B: backend::Backend>(
f: &mut Frame<B>, app_state: &mut app::App, draw_loc: Rect,
) {
let process_data: &[ConvertedProcessData] = if app_state.is_grouped() {
&app_state.canvas_data.grouped_process_data
} else {
&app_state.canvas_data.process_data
};
// Admittedly this is kinda a hack... but we need to:
// * Scroll
// * Show/hide elements based on scroll position
// As such, we use a process_counter to know when we've hit the process we've currently scrolled to. We also need to move the list - we can
// do so by hiding some elements!
let num_rows = i64::from(draw_loc.height) - 5;
let start_position = get_start_position(
num_rows,
&(app_state.scroll_direction),
&mut app_state.previous_process_position,
app_state.currently_selected_process_position,
);
let sliced_vec: Vec<ConvertedProcessData> = (&process_data[start_position as usize..]).to_vec();
let mut process_counter = 0;
// Draw!
let process_rows = sliced_vec.iter().map(|process| {
let stringified_process_vec: Vec<String> = vec![
if app_state.is_grouped() {
process.group.len().to_string()
} else {
process.pid.to_string()
},
process.name.clone(),
process.cpu_usage.clone(),
process.mem_usage.clone(),
];
Row::StyledData(
stringified_process_vec.into_iter(),
match app_state.current_application_position {
app::ApplicationPosition::Process => {
if process_counter
== app_state.currently_selected_process_position - start_position
{
process_counter = -1;
Style::default().fg(Color::Black).bg(Color::Cyan)
} else {
if process_counter >= 0 {
process_counter += 1;
}
Style::default().fg(TEXT_COLOUR)
}
}
_ => Style::default().fg(TEXT_COLOUR),
},
)
});
use app::data_collection::processes::ProcessSorting;
let mut pid_or_name = if app_state.is_grouped() {
"Count"
} else {
"PID(p)"
}
.to_string();
let mut name = "Name(n)".to_string();
let mut cpu = "CPU%(c)".to_string();
let mut mem = "Mem%(m)".to_string();
let direction_val = if app_state.process_sorting_reverse {
"".to_string()
} else {
"".to_string()
};
match app_state.process_sorting_type {
ProcessSorting::CPU => cpu += &direction_val,
ProcessSorting::MEM => mem += &direction_val,
ProcessSorting::PID => pid_or_name += &direction_val,
ProcessSorting::NAME => name += &direction_val,
};
// TODO: [OPT] Reuse calculation to save time?
let process_headers = [pid_or_name, name, cpu, mem];
let process_headers_lens: Vec<usize> = process_headers
.iter()
.map(|entry| entry.len())
.collect::<Vec<_>>();
// Calculate widths
let width = f64::from(draw_loc.width);
let width_ratios = [0.2, 0.4, 0.2, 0.2];
let variable_intrinsic_results =
get_variable_intrinsic_widths(width as u16, &width_ratios, &process_headers_lens);
let intrinsic_widths: Vec<u16> =
((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec();
Table::new(process_headers.iter(), process_rows)
.block(
Block::default()
.title("Processes")
.borders(Borders::ALL)
.border_style(match app_state.current_application_position {
app::ApplicationPosition::Process => *CANVAS_HIGHLIGHTED_BORDER_STYLE,
_ => *CANVAS_BORDER_STYLE,
}),
)
.header_style(Style::default().fg(Color::LightBlue))
.widths(
&(intrinsic_widths
.into_iter()
.map(|calculated_width| Constraint::Length(calculated_width as u16))
.collect::<Vec<_>>()),
)
.render(f, draw_loc);
}
/// A somewhat jury-rigged solution to simulate a variable intrinsic layout for
/// table widths. Note that this will do one main pass to try to properly
/// allocate widths. This will thus potentially cut off latter elements
/// (return size of 0) if it is too small (threshold), but will try its best.
///
/// `width thresholds` and `desired_widths_ratio` should be the same length.
/// Otherwise bad things happen.
fn get_variable_intrinsic_widths(
total_width: u16, desired_widths_ratio: &[f64], width_thresholds: &[usize],
) -> (Vec<u16>, usize) {
let num_widths = desired_widths_ratio.len();
let mut resulting_widths: Vec<u16> = vec![0; num_widths];
let mut last_index = 0;
let mut remaining_width = (total_width - (num_widths as u16 - 1)) as i32; // Required for spaces...
let desired_widths = desired_widths_ratio
.iter()
.map(|&desired_width_ratio| (desired_width_ratio * total_width as f64) as i32)
.collect::<Vec<_>>();
for (itx, desired_width) in desired_widths.into_iter().enumerate() {
resulting_widths[itx] = if desired_width < width_thresholds[itx] as i32 {
// Try to take threshold, else, 0
if remaining_width < width_thresholds[itx] as i32 {
0
} else {
remaining_width -= width_thresholds[itx] as i32;
width_thresholds[itx] as u16
}
} else {
// Take as large as possible
if remaining_width < desired_width {
// Check the biggest chunk possible
if remaining_width < width_thresholds[itx] as i32 {
0
} else {
let temp_width = remaining_width;
remaining_width = 0;
temp_width as u16
}
} else {
remaining_width -= desired_width;
desired_width as u16
}
};
if resulting_widths[itx] == 0 {
break;
} else {
last_index += 1;
}
}
// Simple redistribution tactic - if there's any space left, split it evenly amongst all members
if last_index < num_widths {
let for_all_widths = (remaining_width / last_index as i32) as u16;
let mut remainder = remaining_width % last_index as i32;
for resulting_width in &mut resulting_widths {
*resulting_width += for_all_widths;
if remainder > 0 {
*resulting_width += 1;
remainder -= 1;
}
}
}
(resulting_widths, last_index)
}
fn get_start_position(
num_rows: i64, scroll_direction: &app::ScrollDirection, previously_scrolled_position: &mut i64,
currently_selected_position: i64,
) -> i64 {
match scroll_direction {
app::ScrollDirection::DOWN => {
if currently_selected_position < *previously_scrolled_position + num_rows {
// If, using previous_scrolled_position, we can see the element
// (so within that and + num_rows) just reuse the current previously scrolled position
*previously_scrolled_position
} else if currently_selected_position >= num_rows {
// Else if the current position past the last element visible in the list, omit
// until we can see that element
*previously_scrolled_position = currently_selected_position - num_rows;
currently_selected_position - num_rows
} else {
// Else, if it is not past the last element visible, do not omit anything
0
}
}
app::ScrollDirection::UP => {
if currently_selected_position <= *previously_scrolled_position {
// If it's past the first element, then show from that element downwards
*previously_scrolled_position = currently_selected_position;
currently_selected_position
} else {
// Else, don't change what our start position is from whatever it is set to!
*previously_scrolled_position
}
}
}
}