use crate::{ app, constants, data_conversion::{ConvertedCpuData, ConvertedProcessData}, utils::{error, gen_util::*}, }; use std::cmp::max; use tui::{ backend, layout::{Alignment, Constraint, Direction, Layout, Rect}, style::{Color, Style}, terminal::Frame, widgets::{Axis, Block, Borders, Chart, Dataset, Marker, Paragraph, Row, Table, Text, Widget}, Terminal, }; const TEXT_COLOUR: Color = Color::Gray; const GRAPH_COLOUR: Color = Color::Gray; const BORDER_STYLE_COLOUR: Color = Color::Gray; const HIGHLIGHTED_BORDER_STYLE_COLOUR: Color = Color::LightBlue; const TABLE_HEADER_COLOUR: Color = Color::LightBlue; const GOLDEN_RATIO: f32 = 0.618_034; // Approx, good enough for use (also Clippy gets mad if it's too long) // Headers const CPU_LEGEND_HEADER: [&str; 2] = ["CPU", "Use%"]; const DISK_HEADERS: [&str; 7] = ["Disk", "Mount", "Used", "Free", "Total", "R/s", "W/s"]; const TEMP_HEADERS: [&str; 2] = ["Sensor", "Temp"]; const MEM_HEADERS: [&str; 3] = ["Mem", "Usage", "Usage%"]; const NON_WINDOWS_NETWORK_HEADERS: [&str; 4] = ["RX", "TX", "Total RX", "Total TX"]; const WINDOWS_NETWORK_HEADERS: [&str; 2] = ["RX", "TX"]; const FORCE_MIN_THRESHOLD: usize = 5; lazy_static! { static ref HELP_TEXT: [Text<'static>; 17] = [ Text::raw("\nGeneral Keybindings\n"), Text::raw("q, Ctrl-c to quit. Note if you are currently in the search widget, `q` will not work.\n"), Text::raw("Ctrl-r to reset all data.\n"), Text::raw("f to toggle freezing and unfreezing the display.\n"), Text::raw( "Ctrl-Up or Ctrl-k, Ctrl-Down or Ctrl-j, Ctrl-Left or Ctrl-h, Ctrl-Right or Ctrl-l to navigate between widgets.\n" ), Text::raw("Up or k and Down or j scrolls through a list.\n"), Text::raw("Esc to close a dialog window (help or dd confirmation).\n"), Text::raw("? to get this help screen.\n"), Text::raw("\n Process Widget Keybindings\n"), Text::raw("dd to kill the selected process.\n"), Text::raw("c to sort by CPU usage.\n"), Text::raw("m to sort by memory usage.\n"), Text::raw("p to sort by PID.\n"), Text::raw("n to sort by process name.\n"), Text::raw("Tab to group together processes with the same name.\n"), Text::raw("Ctrl-f to toggle searching for a process. / to just open it. Use Ctrl-p and Ctrl-n to toggle between searching for PID and name.\n"), Text::raw("\nFor startup flags, type in \"btm -h\".") ]; static ref COLOUR_LIST: Vec = gen_n_colours(constants::NUM_COLOURS); static ref CANVAS_BORDER_STYLE: Style = Style::default().fg(BORDER_STYLE_COLOUR); static ref CANVAS_HIGHLIGHTED_BORDER_STYLE: Style = Style::default().fg(HIGHLIGHTED_BORDER_STYLE_COLOUR); static ref DISK_HEADERS_LENS: Vec = DISK_HEADERS .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); static ref CPU_LEGEND_HEADER_LENS: Vec = CPU_LEGEND_HEADER .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); static ref TEMP_HEADERS_LENS: Vec = TEMP_HEADERS .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); static ref MEM_HEADERS_LENS: Vec = MEM_HEADERS .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); static ref NON_WINDOWS_NETWORK_HEADERS_LENS: Vec = NON_WINDOWS_NETWORK_HEADERS .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); static ref WINDOWS_NETWORK_HEADERS_LENS: Vec = WINDOWS_NETWORK_HEADERS .iter() .map(|entry| max(FORCE_MIN_THRESHOLD, entry.len())) .collect::>(); } #[derive(Default)] pub struct CanvasData { pub rx_display: String, pub tx_display: String, pub total_rx_display: String, pub total_tx_display: String, pub network_data_rx: Vec<(f64, f64)>, pub network_data_tx: Vec<(f64, f64)>, pub disk_data: Vec>, pub temp_sensor_data: Vec>, pub process_data: Vec, pub grouped_process_data: Vec, pub memory_labels: Vec<(u64, u64)>, pub mem_data: Vec<(f64, f64)>, pub swap_data: Vec<(f64, f64)>, pub cpu_data: Vec, } /// Generates random colours. /// Strategy found from https://martin.ankerl.com/2009/12/09/how-to-create-random-colors-programmatically/ fn gen_n_colours(num_to_gen: i32) -> Vec { fn gen_hsv(h: f32) -> f32 { let new_val = h + GOLDEN_RATIO; if new_val > 1.0 { new_val.fract() } else { new_val } } /// This takes in an h, s, and v value of range [0, 1] /// For explanation of what this does, see /// https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative fn hsv_to_rgb(hue: f32, saturation: f32, value: f32) -> (u8, u8, u8) { fn hsv_helper(num: u32, hu: f32, sat: f32, val: f32) -> f32 { let k = (num as f32 + hu * 6.0) % 6.0; val - val * sat * float_max(float_min(k, float_min(4.1 - k, 1.1)), 0.0) } ( (hsv_helper(5, hue, saturation, value) * 255.0) as u8, (hsv_helper(3, hue, saturation, value) * 255.0) as u8, (hsv_helper(1, hue, saturation, value) * 255.0) as u8, ) } // Generate colours let mut colour_vec: Vec = vec![ Color::LightCyan, Color::LightYellow, Color::Red, Color::Green, Color::LightMagenta, ]; let mut h: f32 = 0.4; // We don't need random colours... right? for _i in 0..num_to_gen { h = gen_hsv(h); let result = hsv_to_rgb(h, 0.5, 0.95); colour_vec.push(Color::Rgb(result.0, result.1, result.2)); } colour_vec } #[allow(unused_variables)] pub fn draw_data( terminal: &mut Terminal, app_state: &mut app::App, ) -> error::Result<()> { terminal.autoresize()?; terminal.draw(|mut f| { if app_state.show_help { // Only for the help let vertical_dialog_chunk = Layout::default() .direction(Direction::Vertical) .margin(1) .constraints( [ Constraint::Percentage(27), Constraint::Percentage(50), Constraint::Percentage(23), ] .as_ref(), ) .split(f.size()); let middle_dialog_chunk = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints( [ Constraint::Percentage(30), Constraint::Percentage(40), Constraint::Percentage(30), ] .as_ref(), ) .split(vertical_dialog_chunk[1]); Paragraph::new(HELP_TEXT.iter()) .block( Block::default() .title("Help (Press Esc to close)") .borders(Borders::ALL), ) .style(Style::default().fg(Color::Gray)) .alignment(Alignment::Left) .wrap(true) .render(&mut f, middle_dialog_chunk[1]); } else if app_state.show_dd { let vertical_dialog_chunk = Layout::default() .direction(Direction::Vertical) .margin(1) .constraints( [ Constraint::Percentage(40), Constraint::Percentage(20), Constraint::Percentage(40), ] .as_ref(), ) .split(f.size()); let middle_dialog_chunk = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints( [ Constraint::Percentage(30), Constraint::Percentage(40), Constraint::Percentage(30), ] .as_ref(), ) .split(vertical_dialog_chunk[1]); if let Some(dd_err) = app_state.dd_err.clone() { let dd_text = [Text::raw(format!( "\nFailure to properly kill the process - {}", dd_err ))]; Paragraph::new(dd_text.iter()) .block( Block::default() .title("Kill Process Error (Press Esc to close)") .borders(Borders::ALL), ) .style(Style::default().fg(Color::Gray)) .alignment(Alignment::Center) .wrap(true) .render(&mut f, middle_dialog_chunk[1]); } else if let Some(process_list) = app_state.get_current_highlighted_process_list() { if let Some(process) = process_list.first() { let dd_text = [ if app_state.is_grouped() { Text::raw(format!( "\nAre you sure you want to kill {} process(es) with name {}?", process_list.len(), process.name )) } else { Text::raw(format!( "\nAre you sure you want to kill process {} with PID {}?", process.name, process.pid )) }, Text::raw("\n\nPress ENTER to proceed, ESC to exit."), Text::raw("\nNote that if bottom is frozen, it must be unfrozen for changes to be shown."), ]; Paragraph::new(dd_text.iter()) .block( Block::default() .title("Kill Process Confirmation (Press Esc to close)") .borders(Borders::ALL), ) .style(Style::default().fg(Color::Gray)) .alignment(Alignment::Center) .wrap(true) .render(&mut f, middle_dialog_chunk[1]); } else { app_state.show_dd = false; } } else { // This is a bit nasty, but it works well... I guess. app_state.show_dd = false; } } else { let vertical_chunks = Layout::default() .direction(Direction::Vertical) .margin(1) .constraints( [ Constraint::Percentage(33), Constraint::Percentage(34), Constraint::Percentage(34), ] .as_ref(), ) .split(f.size()); let middle_chunks = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints([Constraint::Percentage(60), Constraint::Percentage(40)].as_ref()) .split(vertical_chunks[1]); let middle_divided_chunk_2 = Layout::default() .direction(Direction::Vertical) .margin(0) .constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref()) .split(middle_chunks[1]); let middle_divide_chunk_3 = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints([Constraint::Percentage(40), Constraint::Percentage(60)].as_ref()) .split(middle_divided_chunk_2[0]); let bottom_chunks = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints([Constraint::Percentage(50), Constraint::Percentage(50)].as_ref()) .split(vertical_chunks[2]); // Component specific chunks let cpu_chunk = Layout::default() .direction(Direction::Horizontal) .margin(0) .constraints( if app_state.left_legend { [Constraint::Percentage(15), Constraint::Percentage(85)] } else { [Constraint::Percentage(85), Constraint::Percentage(15)] } .as_ref(), ) .split(vertical_chunks[0]); let network_chunk = Layout::default() .direction(Direction::Vertical) .margin(0) .constraints( if (bottom_chunks[0].height as f64 * 0.25) as u16 >= 4 { [Constraint::Percentage(75), Constraint::Percentage(25)] } else { let required = if bottom_chunks[0].height < 10 { bottom_chunks[0].height / 2 } else { 5 }; debug!("Req: {}", required); let remaining = bottom_chunks[0].height - required; [Constraint::Length(remaining), Constraint::Length(required)] } .as_ref(), ) .split(bottom_chunks[0]); // Default chunk index based on left or right legend setting let legend_index = if app_state.left_legend { 0 } else { 1 }; let graph_index = if app_state.left_legend { 1 } else { 0 }; // Set up blocks and their components // CPU graph draw_cpu_graph(&mut f, &app_state, cpu_chunk[graph_index]); // CPU legend draw_cpu_legend(&mut f, app_state, cpu_chunk[legend_index]); //Memory usage graph draw_memory_graph(&mut f, &app_state, middle_chunks[0]); // Network graph draw_network_graph(&mut f, &app_state, network_chunk[0]); draw_network_labels(&mut f, app_state, network_chunk[1]); // Temperature table draw_temp_table(&mut f, app_state, middle_divided_chunk_2[0]); // Disk usage table draw_disk_table(&mut f, app_state, middle_divided_chunk_2[1]); // Processes table if app_state.is_searching() { let processes_chunk = Layout::default() .direction(Direction::Vertical) .margin(0) .constraints([Constraint::Percentage(25), Constraint::Percentage(75)].as_ref()) .split(bottom_chunks[1]); draw_search_field(&mut f, app_state, processes_chunk[0]); draw_processes_table(&mut f, app_state, processes_chunk[1]); } else { draw_processes_table(&mut f, app_state, bottom_chunks[1]); } } })?; Ok(()) } fn draw_cpu_graph(f: &mut Frame, app_state: &app::App, draw_loc: Rect) { let cpu_data: &[ConvertedCpuData] = &app_state.canvas_data.cpu_data; // CPU usage graph let x_axis: Axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]); let y_axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([-0.5, 100.5]) .labels(&["0%", "100%"]); let mut dataset_vector: Vec = Vec::new(); let mut cpu_entries_vec: Vec<(Style, Vec<(f64, f64)>)> = Vec::new(); for (i, cpu) in cpu_data.iter().enumerate() { let mut avg_cpu_exist_offset = 0; if app_state.show_average_cpu { if i == 0 { // Skip, we want to render the average cpu last! continue; } else { avg_cpu_exist_offset = 1; } } cpu_entries_vec.push(( Style::default().fg(COLOUR_LIST[(i - avg_cpu_exist_offset) % COLOUR_LIST.len()]), cpu.cpu_data .iter() .map(<(f64, f64)>::from) .collect::>(), )); } if app_state.show_average_cpu { if let Some(avg_cpu_entry) = cpu_data.first() { cpu_entries_vec.push(( Style::default().fg(COLOUR_LIST[(cpu_data.len() - 1) % COLOUR_LIST.len()]), avg_cpu_entry .cpu_data .iter() .map(<(f64, f64)>::from) .collect::>(), )); } } for cpu_entry in &cpu_entries_vec { dataset_vector.push( Dataset::default() .marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille }) .style(cpu_entry.0) .data(&(cpu_entry.1)), ); } Chart::default() .block( Block::default() .title("CPU") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Cpu => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .x_axis(x_axis) .y_axis(y_axis) .datasets(&dataset_vector) .render(f, draw_loc); } fn draw_cpu_legend( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let cpu_data: &[ConvertedCpuData] = &(app_state.canvas_data.cpu_data); let num_rows = i64::from(draw_loc.height) - 5; let start_position = get_start_position( num_rows, &(app_state.scroll_direction), &mut app_state.previous_cpu_table_position, app_state.currently_selected_cpu_table_position, ); let sliced_cpu_data = (&cpu_data[start_position as usize..]).to_vec(); let mut stringified_cpu_data: Vec> = Vec::new(); for cpu in sliced_cpu_data { if let Some(cpu_data) = cpu.cpu_data.last() { stringified_cpu_data.push(vec![ cpu.cpu_name.clone(), format!("{:.0}%", cpu_data.usage.round()), ]); } } let mut cpu_row_counter = 0; let cpu_rows = stringified_cpu_data .iter() .enumerate() .map(|(itx, cpu_string_row)| { Row::StyledData( cpu_string_row.iter(), match app_state.current_application_position { app::ApplicationPosition::Cpu => { if cpu_row_counter == app_state.currently_selected_cpu_table_position - start_position { cpu_row_counter = -1; Style::default().fg(Color::Black).bg(Color::Cyan) } else { if cpu_row_counter >= 0 { cpu_row_counter += 1; } Style::default().fg(COLOUR_LIST[itx % COLOUR_LIST.len()]) } } _ => Style::default().fg(COLOUR_LIST[itx % COLOUR_LIST.len()]), }, ) }); // Calculate widths let width = f64::from(draw_loc.width); let width_ratios = vec![0.5, 0.5]; let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, &CPU_LEGEND_HEADER_LENS); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); // Draw Table::new(CPU_LEGEND_HEADER.iter(), cpu_rows) .block(Block::default().borders(Borders::ALL).border_style( match app_state.current_application_position { app::ApplicationPosition::Cpu => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }, )) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } #[allow(dead_code)] fn draw_memory_table( f: &mut Frame, app_state: &app::App, memory_entry: Vec, swap_entry: Vec, draw_loc: Rect, ) { // Calculate widths let width = f64::from(draw_loc.width); let width_ratios = [0.2, 0.4, 0.4]; let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, &MEM_HEADERS_LENS); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); let mem_rows = vec![memory_entry, swap_entry]; let mapped_mem_rows = mem_rows.iter().enumerate().map(|(itx, val)| { Row::StyledData( val.iter(), Style::default().fg(COLOUR_LIST[itx % COLOUR_LIST.len()]), ) }); // Draw Table::new(MEM_HEADERS.iter(), mapped_mem_rows) .block(Block::default().borders(Borders::ALL).border_style( match app_state.current_application_position { app::ApplicationPosition::Mem => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }, )) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } fn draw_memory_graph(f: &mut Frame, app_state: &app::App, draw_loc: Rect) { let mem_data: &[(f64, f64)] = &(app_state.canvas_data.mem_data); let swap_data: &[(f64, f64)] = &(app_state.canvas_data.swap_data); let memory_labels: &[(u64, u64)] = &(app_state.canvas_data.memory_labels); let x_axis: Axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([0.0, constants::TIME_STARTS_FROM as f64 * 10.0]); let y_axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([-0.5, 100.5]) // Offset as the zero value isn't drawn otherwise... .labels(&["0%", "100%"]); let mem_name = "RAM:".to_string() + &format!( "{:3}%", (mem_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64) ) + &format!( " {:.1}GB/{:.1}GB", memory_labels.first().unwrap_or(&(0, 0)).0 as f64 / 1024.0, memory_labels.first().unwrap_or(&(0, 0)).1 as f64 / 1024.0 ); let swap_name: String; let mut mem_canvas_vec: Vec = vec![Dataset::default() .name(&mem_name) .marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille }) .style(Style::default().fg(COLOUR_LIST[0])) .data(&mem_data)]; if !(&swap_data).is_empty() { if let Some(last_canvas_result) = (&swap_data).last() { if last_canvas_result.1 >= 0.0 { swap_name = "SWP:".to_string() + &format!( "{:3}%", (swap_data.last().unwrap_or(&(0_f64, 0_f64)).1.round() as u64) ) + &format!( " {:.1}GB/{:.1}GB", memory_labels[1].0 as f64 / 1024.0, memory_labels[1].1 as f64 / 1024.0 ); mem_canvas_vec.push( Dataset::default() .name(&swap_name) .marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille }) .style(Style::default().fg(COLOUR_LIST[1])) .data(&swap_data), ); } } } // Memory usage table // draw_memory_table(f, &app_state, mem_labels, swap_labels, label_loc); Chart::default() .block( Block::default() .title("Memory") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Mem => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .x_axis(x_axis) .y_axis(y_axis) .datasets(&mem_canvas_vec) .render(f, draw_loc); } fn draw_network_graph(f: &mut Frame, app_state: &app::App, draw_loc: Rect) { let network_data_rx: &[(f64, f64)] = &(app_state.canvas_data.network_data_rx); let network_data_tx: &[(f64, f64)] = &(app_state.canvas_data.network_data_tx); let x_axis: Axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([0.0, 600_000.0]); let y_axis = Axis::default() .style(Style::default().fg(GRAPH_COLOUR)) .bounds([-0.5, 30_f64]) .labels(&["0B", "1KiB", "1MiB", "1GiB"]); Chart::default() .block( Block::default() .title("Network") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Network => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .x_axis(x_axis) .y_axis(y_axis) .datasets(&[ Dataset::default() .marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille }) .style(Style::default().fg(COLOUR_LIST[0])) .data(&network_data_rx), Dataset::default() .marker(if app_state.use_dot { Marker::Dot } else { Marker::Braille }) .style(Style::default().fg(COLOUR_LIST[1])) .data(&network_data_tx), ]) .render(f, draw_loc); } fn draw_network_labels( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let rx_display: String = app_state.canvas_data.rx_display.clone(); let tx_display: String = app_state.canvas_data.tx_display.clone(); let total_rx_display: String = app_state.canvas_data.total_rx_display.clone(); let total_tx_display: String = app_state.canvas_data.total_tx_display.clone(); // Gross but I need it to work... let total_network = if cfg!(not(target_os = "windows")) { vec![vec![ rx_display, tx_display, total_rx_display, total_tx_display, ]] } else { vec![vec![rx_display, tx_display]] }; let mapped_network = total_network.iter().map(|val| Row::Data(val.iter())); // Calculate widths let width_ratios: Vec; let lens: &Vec; let width = f64::from(draw_loc.width); if cfg!(not(target_os = "windows")) { width_ratios = vec![0.25, 0.25, 0.25, 0.25]; lens = &NON_WINDOWS_NETWORK_HEADERS_LENS; } else { width_ratios = vec![0.25, 0.25]; lens = &WINDOWS_NETWORK_HEADERS_LENS; } let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, lens); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); // Draw Table::new( // TODO: [OPT] Feels like I can optimize this and avoid multiple to_vec calls? if cfg!(not(target_os = "windows")) { NON_WINDOWS_NETWORK_HEADERS.to_vec() } else { WINDOWS_NETWORK_HEADERS.to_vec() } .iter(), mapped_network, ) .block(Block::default().borders(Borders::ALL).border_style( match app_state.current_application_position { app::ApplicationPosition::Network => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }, )) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } fn draw_temp_table( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let temp_sensor_data: &[Vec] = &(app_state.canvas_data.temp_sensor_data); let num_rows = i64::from(draw_loc.height) - 5; let start_position = get_start_position( num_rows, &(app_state.scroll_direction), &mut app_state.previous_temp_position, app_state.currently_selected_temperature_position, ); let sliced_vec: Vec> = (&temp_sensor_data[start_position as usize..]).to_vec(); let mut temp_row_counter = 0; let temperature_rows = sliced_vec.iter().map(|temp_row| { Row::StyledData( temp_row.iter(), match app_state.current_application_position { app::ApplicationPosition::Temp => { if temp_row_counter == app_state.currently_selected_temperature_position - start_position { temp_row_counter = -1; Style::default().fg(Color::Black).bg(Color::Cyan) } else { if temp_row_counter >= 0 { temp_row_counter += 1; } Style::default().fg(TEXT_COLOUR) } } _ => Style::default().fg(TEXT_COLOUR), }, ) }); // Calculate widths let width = f64::from(draw_loc.width); let width_ratios = [0.5, 0.5]; let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, &TEMP_HEADERS_LENS); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); // Draw Table::new(TEMP_HEADERS.iter(), temperature_rows) .block( Block::default() .title("Temperatures") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Temp => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } fn draw_disk_table( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let disk_data: &[Vec] = &(app_state.canvas_data.disk_data); let num_rows = i64::from(draw_loc.height) - 5; let start_position = get_start_position( num_rows, &(app_state.scroll_direction), &mut app_state.previous_disk_position, app_state.currently_selected_disk_position, ); let sliced_vec: Vec> = (&disk_data[start_position as usize..]).to_vec(); let mut disk_counter = 0; let disk_rows = sliced_vec.iter().map(|disk| { Row::StyledData( disk.iter(), match app_state.current_application_position { app::ApplicationPosition::Disk => { if disk_counter == app_state.currently_selected_disk_position - start_position { disk_counter = -1; Style::default().fg(Color::Black).bg(Color::Cyan) } else { if disk_counter >= 0 { disk_counter += 1; } Style::default().fg(TEXT_COLOUR) } } _ => Style::default().fg(TEXT_COLOUR), }, ) }); // Calculate widths // TODO: Ellipsis on strings? let width = f64::from(draw_loc.width); let width_ratios = [0.2, 0.15, 0.13, 0.13, 0.13, 0.13, 0.13]; let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, &DISK_HEADERS_LENS); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); // Draw! Table::new(DISK_HEADERS.iter(), disk_rows) .block( Block::default() .title("Disk") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Disk => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } fn draw_search_field( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let width = draw_loc.width - 18; // TODO [SEARCH] this is hard-coded... ew let query = app_state.get_current_search_query(); let shrunk_query = if query.len() < width as usize { query } else { &query[(query.len() - width as usize)..] }; // TODO: [SEARCH] Consider making this look prettier let cursor_position = app_state.get_cursor_position(); // TODO: [SEARCH] This can be optimized... let mut query_with_cursor: Vec = shrunk_query .chars() .enumerate() .map(|(itx, c)| { if itx == cursor_position { Text::styled( c.to_string(), Style::default().fg(TEXT_COLOUR).bg(TABLE_HEADER_COLOUR), ) } else { Text::styled(c.to_string(), Style::default().fg(TEXT_COLOUR)) } }) .collect::>(); if cursor_position >= query.len() { query_with_cursor.push(Text::styled( " ".to_string(), Style::default().fg(TEXT_COLOUR).bg(TABLE_HEADER_COLOUR), )) } let mut search_text = vec![ if app_state.is_searching_with_pid() { Text::styled("\nPID", Style::default().fg(TABLE_HEADER_COLOUR)) } else { Text::styled("\nName", Style::default().fg(TABLE_HEADER_COLOUR)) }, if app_state.use_simple { Text::styled(" (Simple): ", Style::default().fg(TABLE_HEADER_COLOUR)) } else { Text::styled(" (Regex): ", Style::default().fg(TABLE_HEADER_COLOUR)) }, ]; search_text.extend(query_with_cursor); // TODO: [SEARCH] Gotta make this easier to understand... it's pretty ugly cramming controls like this Paragraph::new(search_text.iter()) .block( Block::default() .title("Search (Esc or Ctrl-f to close)") .borders(Borders::ALL) .border_style(if app_state.get_current_regex_matcher().is_err() { Style::default().fg(Color::Red) } else { match app_state.current_application_position { app::ApplicationPosition::ProcessSearch => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, } }), ) .style(Style::default().fg(Color::Gray)) .alignment(Alignment::Left) .wrap(false) .render(f, draw_loc); } fn draw_processes_table( f: &mut Frame, app_state: &mut app::App, draw_loc: Rect, ) { let process_data: &[ConvertedProcessData] = if app_state.is_grouped() { &app_state.canvas_data.grouped_process_data } else { &app_state.canvas_data.process_data }; // Admittedly this is kinda a hack... but we need to: // * Scroll // * Show/hide elements based on scroll position // As such, we use a process_counter to know when we've hit the process we've currently scrolled to. We also need to move the list - we can // do so by hiding some elements! let num_rows = i64::from(draw_loc.height) - 5; let start_position = get_start_position( num_rows, &(app_state.scroll_direction), &mut app_state.previous_process_position, app_state.currently_selected_process_position, ); let sliced_vec: Vec = (&process_data[start_position as usize..]).to_vec(); let mut process_counter = 0; // Draw! let process_rows = sliced_vec.iter().map(|process| { let stringified_process_vec: Vec = vec![ if app_state.is_grouped() { process.group.len().to_string() } else { process.pid.to_string() }, process.name.clone(), process.cpu_usage.clone(), process.mem_usage.clone(), ]; Row::StyledData( stringified_process_vec.into_iter(), match app_state.current_application_position { app::ApplicationPosition::Process => { if process_counter == app_state.currently_selected_process_position - start_position { process_counter = -1; Style::default().fg(Color::Black).bg(Color::Cyan) } else { if process_counter >= 0 { process_counter += 1; } Style::default().fg(TEXT_COLOUR) } } _ => Style::default().fg(TEXT_COLOUR), }, ) }); use app::data_collection::processes::ProcessSorting; let mut pid_or_name = if app_state.is_grouped() { "Count" } else { "PID(p)" } .to_string(); let mut name = "Name(n)".to_string(); let mut cpu = "CPU%(c)".to_string(); let mut mem = "Mem%(m)".to_string(); let direction_val = if app_state.process_sorting_reverse { "⯆".to_string() } else { "⯅".to_string() }; match app_state.process_sorting_type { ProcessSorting::CPU => cpu += &direction_val, ProcessSorting::MEM => mem += &direction_val, ProcessSorting::PID => pid_or_name += &direction_val, ProcessSorting::NAME => name += &direction_val, }; // TODO: [OPT] Reuse calculation to save time? let process_headers = [pid_or_name, name, cpu, mem]; let process_headers_lens: Vec = process_headers .iter() .map(|entry| entry.len()) .collect::>(); // Calculate widths let width = f64::from(draw_loc.width); let width_ratios = [0.2, 0.4, 0.2, 0.2]; let variable_intrinsic_results = get_variable_intrinsic_widths(width as u16, &width_ratios, &process_headers_lens); let intrinsic_widths: Vec = ((variable_intrinsic_results.0)[0..variable_intrinsic_results.1]).to_vec(); Table::new(process_headers.iter(), process_rows) .block( Block::default() .title("Processes") .borders(Borders::ALL) .border_style(match app_state.current_application_position { app::ApplicationPosition::Process => *CANVAS_HIGHLIGHTED_BORDER_STYLE, _ => *CANVAS_BORDER_STYLE, }), ) .header_style(Style::default().fg(TABLE_HEADER_COLOUR)) .widths( &(intrinsic_widths .into_iter() .map(|calculated_width| Constraint::Length(calculated_width as u16)) .collect::>()), ) .render(f, draw_loc); } /// A somewhat jury-rigged solution to simulate a variable intrinsic layout for /// table widths. Note that this will do one main pass to try to properly /// allocate widths. This will thus potentially cut off latter elements /// (return size of 0) if it is too small (threshold), but will try its best. /// /// `width thresholds` and `desired_widths_ratio` should be the same length. /// Otherwise bad things happen. fn get_variable_intrinsic_widths( total_width: u16, desired_widths_ratio: &[f64], width_thresholds: &[usize], ) -> (Vec, usize) { let num_widths = desired_widths_ratio.len(); let mut resulting_widths: Vec = vec![0; num_widths]; let mut last_index = 0; let mut remaining_width = (total_width - (num_widths as u16 - 1)) as i32; // Required for spaces... let desired_widths = desired_widths_ratio .iter() .map(|&desired_width_ratio| (desired_width_ratio * total_width as f64) as i32) .collect::>(); for (itx, desired_width) in desired_widths.into_iter().enumerate() { resulting_widths[itx] = if desired_width < width_thresholds[itx] as i32 { // Try to take threshold, else, 0 if remaining_width < width_thresholds[itx] as i32 { 0 } else { remaining_width -= width_thresholds[itx] as i32; width_thresholds[itx] as u16 } } else { // Take as large as possible if remaining_width < desired_width { // Check the biggest chunk possible if remaining_width < width_thresholds[itx] as i32 { 0 } else { let temp_width = remaining_width; remaining_width = 0; temp_width as u16 } } else { remaining_width -= desired_width; desired_width as u16 } }; if resulting_widths[itx] == 0 { break; } else { last_index += 1; } } // Simple redistribution tactic - if there's any space left, split it evenly amongst all members if last_index < num_widths { let for_all_widths = (remaining_width / last_index as i32) as u16; let mut remainder = remaining_width % last_index as i32; for resulting_width in &mut resulting_widths { *resulting_width += for_all_widths; if remainder > 0 { *resulting_width += 1; remainder -= 1; } } } (resulting_widths, last_index) } fn get_start_position( num_rows: i64, scroll_direction: &app::ScrollDirection, previously_scrolled_position: &mut i64, currently_selected_position: i64, ) -> i64 { match scroll_direction { app::ScrollDirection::DOWN => { if currently_selected_position < *previously_scrolled_position + num_rows { // If, using previous_scrolled_position, we can see the element // (so within that and + num_rows) just reuse the current previously scrolled position *previously_scrolled_position } else if currently_selected_position >= num_rows { // Else if the current position past the last element visible in the list, omit // until we can see that element *previously_scrolled_position = currently_selected_position - num_rows; currently_selected_position - num_rows } else { // Else, if it is not past the last element visible, do not omit anything 0 } } app::ScrollDirection::UP => { if currently_selected_position <= *previously_scrolled_position { // If it's past the first element, then show from that element downwards *previously_scrolled_position = currently_selected_position; currently_selected_position } else { // Else, don't change what our start position is from whatever it is set to! *previously_scrolled_position } } } }