bevy/crates/bevy_ecs/src/world/entity_ref.rs
Félix Lescaudey de Maneville a2b5d7a198
Fix some nightly warnings (#9672)
# Objective

Fix some nightly warnings found by running

`cargo +nightly clippy`

## Solution

Fix the following warnings:
- [x]
[elided_lifetimes_in_associated_constant](https://github.com/rust-lang/rust/issues/115010)
221986134d
- [x]
[unwrap_or_default](https://rust-lang.github.io/rust-clippy/master/index.html#/unwrap_or_default)
32e21c78f9
- [x]
[needless_pass_by_ref_mut](https://rust-lang.github.io/rust-clippy/master/index.html#/needless_pass_by_ref_mut)
c85d6d4a10

There is no breaking change, some internal `bevy_ecs` code no longer
uses a few mutable references but I don't think it should cause any
regression or be performance sensitive, but there might be some ECS
magic I'm unaware of that could break because of those changes
2023-09-02 18:35:06 +00:00

1688 lines
60 KiB
Rust

use crate::{
archetype::{Archetype, ArchetypeId, Archetypes},
bundle::{Bundle, BundleInfo, BundleInserter, DynamicBundle},
change_detection::MutUntyped,
component::{Component, ComponentId, ComponentTicks, Components, StorageType},
entity::{Entities, Entity, EntityLocation},
removal_detection::RemovedComponentEvents,
storage::Storages,
world::{Mut, World},
};
use bevy_ptr::{OwningPtr, Ptr};
use bevy_utils::tracing::debug;
use std::any::TypeId;
use super::{unsafe_world_cell::UnsafeEntityCell, Ref};
/// A read-only reference to a particular [`Entity`] and all of its components.
///
/// # Examples
///
/// Read-only access disjoint with mutable access.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)] pub struct A;
/// # #[derive(Component)] pub struct B;
/// fn disjoint_system(
/// query1: Query<&mut A>,
/// query2: Query<EntityRef, Without<A>>,
/// ) {
/// // ...
/// }
/// # bevy_ecs::system::assert_is_system(disjoint_system);
/// ```
#[derive(Copy, Clone)]
pub struct EntityRef<'w>(UnsafeEntityCell<'w>);
impl<'w> EntityRef<'w> {
/// # Safety
/// - `cell` must have permission to read every component of the entity.
/// - No mutable accesses to any of the entity's components may exist
/// at the same time as the returned [`EntityRef`].
#[inline]
pub(crate) unsafe fn new(cell: UnsafeEntityCell<'w>) -> Self {
Self(cell)
}
/// Returns the [ID](Entity) of the current entity.
#[inline]
#[must_use = "Omit the .id() call if you do not need to store the `Entity` identifier."]
pub fn id(&self) -> Entity {
self.0.id()
}
/// Gets metadata indicating the location where the current entity is stored.
#[inline]
pub fn location(&self) -> EntityLocation {
self.0.location()
}
/// Returns the archetype that the current entity belongs to.
#[inline]
pub fn archetype(&self) -> &Archetype {
self.0.archetype()
}
/// Returns `true` if the current entity has a component of type `T`.
/// Otherwise, this returns `false`.
///
/// ## Notes
///
/// If you do not know the concrete type of a component, consider using
/// [`Self::contains_id`] or [`Self::contains_type_id`].
#[inline]
pub fn contains<T: Component>(&self) -> bool {
self.contains_type_id(TypeId::of::<T>())
}
/// Returns `true` if the current entity has a component identified by `component_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you know the component's [`TypeId`] but not its [`ComponentId`], consider using
/// [`Self::contains_type_id`].
#[inline]
pub fn contains_id(&self, component_id: ComponentId) -> bool {
self.0.contains_id(component_id)
}
/// Returns `true` if the current entity has a component with the type identified by `type_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you have a [`ComponentId`] instead of a [`TypeId`], consider using [`Self::contains_id`].
#[inline]
pub fn contains_type_id(&self, type_id: TypeId) -> bool {
self.0.contains_type_id(type_id)
}
/// Gets access to the component of type `T` for the current entity.
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get<T: Component>(&self) -> Option<&'w T> {
// SAFETY: We have read-only access to all components of this entity.
unsafe { self.0.get::<T>() }
}
/// Gets access to the component of type `T` for the current entity,
/// including change detection information as a [`Ref`].
///
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get_ref<T: Component>(&self) -> Option<Ref<'w, T>> {
// SAFETY: We have read-only access to all components of this entity.
unsafe { self.0.get_ref::<T>() }
}
/// Retrieves the change ticks for the given component. This can be useful for implementing change
/// detection in custom runtimes.
#[inline]
pub fn get_change_ticks<T: Component>(&self) -> Option<ComponentTicks> {
// SAFETY: We have read-only access to all components of this entity.
unsafe { self.0.get_change_ticks::<T>() }
}
/// Retrieves the change ticks for the given [`ComponentId`]. This can be useful for implementing change
/// detection in custom runtimes.
///
/// **You should prefer to use the typed API [`EntityRef::get_change_ticks`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
#[inline]
pub fn get_change_ticks_by_id(&self, component_id: ComponentId) -> Option<ComponentTicks> {
// SAFETY: We have read-only access to all components of this entity.
unsafe { self.0.get_change_ticks_by_id(component_id) }
}
/// Gets the component of the given [`ComponentId`] from the entity.
///
/// **You should prefer to use the typed API where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
///
/// Unlike [`EntityRef::get`], this returns a raw pointer to the component,
/// which is only valid while the `'w` borrow of the lifetime is active.
#[inline]
pub fn get_by_id(&self, component_id: ComponentId) -> Option<Ptr<'w>> {
// SAFETY: We have read-only access to all components of this entity.
unsafe { self.0.get_by_id(component_id) }
}
}
impl<'w> From<EntityWorldMut<'w>> for EntityRef<'w> {
fn from(entity_mut: EntityWorldMut<'w>) -> EntityRef<'w> {
// SAFETY:
// - `EntityWorldMut` guarantees exclusive access to the entire world.
unsafe { EntityRef::new(entity_mut.into_unsafe_entity_cell()) }
}
}
impl<'a> From<&'a EntityWorldMut<'_>> for EntityRef<'a> {
fn from(value: &'a EntityWorldMut<'_>) -> Self {
// SAFETY:
// - `EntityWorldMut` guarantees exclusive access to the entire world.
// - `&value` ensures no mutable accesses are active.
unsafe { EntityRef::new(value.as_unsafe_entity_cell_readonly()) }
}
}
impl<'w> From<EntityMut<'w>> for EntityRef<'w> {
fn from(value: EntityMut<'w>) -> Self {
// SAFETY:
// - `EntityMut` gurantees exclusive access to all of the entity's components.
unsafe { EntityRef::new(value.0) }
}
}
impl<'a> From<&'a EntityMut<'_>> for EntityRef<'a> {
fn from(value: &'a EntityMut<'_>) -> Self {
// SAFETY:
// - `EntityMut` gurantees exclusive access to all of the entity's components.
// - `&value` ensures there are no mutable accesses.
unsafe { EntityRef::new(value.0) }
}
}
/// Provides mutable access to a single entity and all of its components.
///
/// Contrast with [`EntityWorldMut`], with allows adding and removing components,
/// despawning the entity, and provides mutable access to the entire world.
/// Because of this, `EntityWorldMut` cannot coexist with any other world accesses.
///
/// # Examples
///
/// Disjoint mutable access.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// # #[derive(Component)] pub struct A;
/// fn disjoint_system(
/// query1: Query<EntityMut, With<A>>,
/// query2: Query<EntityMut, Without<A>>,
/// ) {
/// // ...
/// }
/// # bevy_ecs::system::assert_is_system(disjoint_system);
/// ```
pub struct EntityMut<'w>(UnsafeEntityCell<'w>);
impl<'w> EntityMut<'w> {
/// # Safety
/// - `cell` must have permission to mutate every component of the entity.
/// - No accesses to any of the entity's components may exist
/// at the same time as the returned [`EntityMut`].
pub(crate) unsafe fn new(cell: UnsafeEntityCell<'w>) -> Self {
Self(cell)
}
/// Returns a new instance with a shorter lifetime.
/// This is useful if you have `&mut EntityMut`, but you need `EntityMut`.
pub fn reborrow(&mut self) -> EntityMut<'_> {
// SAFETY: We have exclusive access to the entire entity and its components.
unsafe { Self::new(self.0) }
}
/// Gets read-only access to all of the entity's components.
pub fn as_readonly(&self) -> EntityRef<'_> {
EntityRef::from(self)
}
/// Returns the [ID](Entity) of the current entity.
#[inline]
#[must_use = "Omit the .id() call if you do not need to store the `Entity` identifier."]
pub fn id(&self) -> Entity {
self.0.id()
}
/// Gets metadata indicating the location where the current entity is stored.
#[inline]
pub fn location(&self) -> EntityLocation {
self.0.location()
}
/// Returns the archetype that the current entity belongs to.
#[inline]
pub fn archetype(&self) -> &Archetype {
self.0.archetype()
}
/// Returns `true` if the current entity has a component of type `T`.
/// Otherwise, this returns `false`.
///
/// ## Notes
///
/// If you do not know the concrete type of a component, consider using
/// [`Self::contains_id`] or [`Self::contains_type_id`].
#[inline]
pub fn contains<T: Component>(&self) -> bool {
self.contains_type_id(TypeId::of::<T>())
}
/// Returns `true` if the current entity has a component identified by `component_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you know the component's [`TypeId`] but not its [`ComponentId`], consider using
/// [`Self::contains_type_id`].
#[inline]
pub fn contains_id(&self, component_id: ComponentId) -> bool {
self.0.contains_id(component_id)
}
/// Returns `true` if the current entity has a component with the type identified by `type_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you have a [`ComponentId`] instead of a [`TypeId`], consider using [`Self::contains_id`].
#[inline]
pub fn contains_type_id(&self, type_id: TypeId) -> bool {
self.0.contains_type_id(type_id)
}
/// Gets access to the component of type `T` for the current entity.
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get<T: Component>(&self) -> Option<&'_ T> {
self.as_readonly().get()
}
/// Gets access to the component of type `T` for the current entity,
/// including change detection information as a [`Ref`].
///
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get_ref<T: Component>(&self) -> Option<Ref<'_, T>> {
self.as_readonly().get_ref()
}
/// Gets mutable access to the component of type `T` for the current entity.
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get_mut<T: Component>(&mut self) -> Option<Mut<'_, T>> {
// SAFETY: &mut self implies exclusive access for duration of returned value
unsafe { self.0.get_mut() }
}
/// Retrieves the change ticks for the given component. This can be useful for implementing change
/// detection in custom runtimes.
#[inline]
pub fn get_change_ticks<T: Component>(&self) -> Option<ComponentTicks> {
self.as_readonly().get_change_ticks::<T>()
}
/// Retrieves the change ticks for the given [`ComponentId`]. This can be useful for implementing change
/// detection in custom runtimes.
///
/// **You should prefer to use the typed API [`EntityWorldMut::get_change_ticks`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
#[inline]
pub fn get_change_ticks_by_id(&self, component_id: ComponentId) -> Option<ComponentTicks> {
self.as_readonly().get_change_ticks_by_id(component_id)
}
/// Gets the component of the given [`ComponentId`] from the entity.
///
/// **You should prefer to use the typed API [`EntityWorldMut::get`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
///
/// Unlike [`EntityMut::get`], this returns a raw pointer to the component,
/// which is only valid while the [`EntityMut`] is alive.
#[inline]
pub fn get_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>> {
self.as_readonly().get_by_id(component_id)
}
/// Gets a [`MutUntyped`] of the component of the given [`ComponentId`] from the entity.
///
/// **You should prefer to use the typed API [`EntityMut::get_mut`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
///
/// Unlike [`EntityMut::get_mut`], this returns a raw pointer to the component,
/// which is only valid while the [`EntityMut`] is alive.
#[inline]
pub fn get_mut_by_id(&mut self, component_id: ComponentId) -> Option<MutUntyped<'_>> {
// SAFETY:
// - `&mut self` ensures that no references exist to this entity's components.
// - `as_unsafe_world_cell` gives mutable permission for all components on this entity
unsafe { self.0.get_mut_by_id(component_id) }
}
}
impl<'w> From<EntityWorldMut<'w>> for EntityMut<'w> {
fn from(value: EntityWorldMut<'w>) -> Self {
// SAFETY: `EntityWorldMut` guarantees exclusive access to the entire world.
unsafe { EntityMut::new(value.into_unsafe_entity_cell()) }
}
}
impl<'a> From<&'a mut EntityWorldMut<'_>> for EntityMut<'a> {
fn from(value: &'a mut EntityWorldMut<'_>) -> Self {
// SAFETY: `EntityWorldMut` guarantees exclusive access to the entire world.
unsafe { EntityMut::new(value.as_unsafe_entity_cell()) }
}
}
/// A mutable reference to a particular [`Entity`], and the entire world.
/// This is essentially a performance-optimized `(Entity, &mut World)` tuple,
/// which caches the [`EntityLocation`] to reduce duplicate lookups.
///
/// Since this type provides mutable access to the entire world, only one
/// [`EntityWorldMut`] can exist at a time for a given world.
///
/// See also [`EntityMut`], which allows disjoint mutable access to multiple
/// entities at once. Unlike `EntityMut`, this type allows adding and
/// removing components, and despawning the entity.
pub struct EntityWorldMut<'w> {
world: &'w mut World,
entity: Entity,
location: EntityLocation,
}
impl<'w> EntityWorldMut<'w> {
fn as_unsafe_entity_cell_readonly(&self) -> UnsafeEntityCell<'_> {
UnsafeEntityCell::new(
self.world.as_unsafe_world_cell_readonly(),
self.entity,
self.location,
)
}
fn as_unsafe_entity_cell(&mut self) -> UnsafeEntityCell<'_> {
UnsafeEntityCell::new(
self.world.as_unsafe_world_cell(),
self.entity,
self.location,
)
}
fn into_unsafe_entity_cell(self) -> UnsafeEntityCell<'w> {
UnsafeEntityCell::new(
self.world.as_unsafe_world_cell(),
self.entity,
self.location,
)
}
/// # Safety
///
/// - `entity` must be valid for `world`: the generation should match that of the entity at the same index.
/// - `location` must be sourced from `world`'s `Entities` and must exactly match the location for `entity`
///
/// The above is trivially satisfied if `location` was sourced from `world.entities().get(entity)`.
#[inline]
pub(crate) unsafe fn new(
world: &'w mut World,
entity: Entity,
location: EntityLocation,
) -> Self {
debug_assert!(world.entities().contains(entity));
debug_assert_eq!(world.entities().get(entity), Some(location));
EntityWorldMut {
world,
entity,
location,
}
}
/// Returns the [ID](Entity) of the current entity.
#[inline]
#[must_use = "Omit the .id() call if you do not need to store the `Entity` identifier."]
pub fn id(&self) -> Entity {
self.entity
}
/// Gets metadata indicating the location where the current entity is stored.
#[inline]
pub fn location(&self) -> EntityLocation {
self.location
}
/// Returns the archetype that the current entity belongs to.
#[inline]
pub fn archetype(&self) -> &Archetype {
&self.world.archetypes[self.location.archetype_id]
}
/// Returns `true` if the current entity has a component of type `T`.
/// Otherwise, this returns `false`.
///
/// ## Notes
///
/// If you do not know the concrete type of a component, consider using
/// [`Self::contains_id`] or [`Self::contains_type_id`].
#[inline]
pub fn contains<T: Component>(&self) -> bool {
self.contains_type_id(TypeId::of::<T>())
}
/// Returns `true` if the current entity has a component identified by `component_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you know the component's [`TypeId`] but not its [`ComponentId`], consider using
/// [`Self::contains_type_id`].
#[inline]
pub fn contains_id(&self, component_id: ComponentId) -> bool {
self.as_unsafe_entity_cell_readonly()
.contains_id(component_id)
}
/// Returns `true` if the current entity has a component with the type identified by `type_id`.
/// Otherwise, this returns false.
///
/// ## Notes
///
/// - If you know the concrete type of the component, you should prefer [`Self::contains`].
/// - If you have a [`ComponentId`] instead of a [`TypeId`], consider using [`Self::contains_id`].
#[inline]
pub fn contains_type_id(&self, type_id: TypeId) -> bool {
self.as_unsafe_entity_cell_readonly()
.contains_type_id(type_id)
}
/// Gets access to the component of type `T` for the current entity.
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get<T: Component>(&self) -> Option<&'_ T> {
EntityRef::from(self).get()
}
/// Gets access to the component of type `T` for the current entity,
/// including change detection information as a [`Ref`].
///
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get_ref<T: Component>(&self) -> Option<Ref<'_, T>> {
EntityRef::from(self).get_ref()
}
/// Gets mutable access to the component of type `T` for the current entity.
/// Returns `None` if the entity does not have a component of type `T`.
#[inline]
pub fn get_mut<T: Component>(&mut self) -> Option<Mut<'_, T>> {
// SAFETY: &mut self implies exclusive access for duration of returned value
unsafe { self.as_unsafe_entity_cell().get_mut() }
}
/// Retrieves the change ticks for the given component. This can be useful for implementing change
/// detection in custom runtimes.
#[inline]
pub fn get_change_ticks<T: Component>(&self) -> Option<ComponentTicks> {
EntityRef::from(self).get_change_ticks::<T>()
}
/// Retrieves the change ticks for the given [`ComponentId`]. This can be useful for implementing change
/// detection in custom runtimes.
///
/// **You should prefer to use the typed API [`EntityWorldMut::get_change_ticks`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
#[inline]
pub fn get_change_ticks_by_id(&self, component_id: ComponentId) -> Option<ComponentTicks> {
EntityRef::from(self).get_change_ticks_by_id(component_id)
}
/// Gets the component of the given [`ComponentId`] from the entity.
///
/// **You should prefer to use the typed API [`EntityWorldMut::get`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
///
/// Unlike [`EntityWorldMut::get`], this returns a raw pointer to the component,
/// which is only valid while the [`EntityWorldMut`] is alive.
#[inline]
pub fn get_by_id(&self, component_id: ComponentId) -> Option<Ptr<'_>> {
EntityRef::from(self).get_by_id(component_id)
}
/// Gets a [`MutUntyped`] of the component of the given [`ComponentId`] from the entity.
///
/// **You should prefer to use the typed API [`EntityWorldMut::get_mut`] where possible and only
/// use this in cases where the actual component types are not known at
/// compile time.**
///
/// Unlike [`EntityWorldMut::get_mut`], this returns a raw pointer to the component,
/// which is only valid while the [`EntityWorldMut`] is alive.
#[inline]
pub fn get_mut_by_id(&mut self, component_id: ComponentId) -> Option<MutUntyped<'_>> {
// SAFETY:
// - `&mut self` ensures that no references exist to this entity's components.
// - `as_unsafe_world_cell` gives mutable permission for all components on this entity
unsafe { self.as_unsafe_entity_cell().get_mut_by_id(component_id) }
}
/// Adds a [`Bundle`] of components to the entity.
///
/// This will overwrite any previous value(s) of the same component type.
pub fn insert<T: Bundle>(&mut self, bundle: T) -> &mut Self {
let change_tick = self.world.change_tick();
let bundle_info = self
.world
.bundles
.init_info::<T>(&mut self.world.components, &mut self.world.storages);
let mut bundle_inserter = bundle_info.get_bundle_inserter(
&mut self.world.entities,
&mut self.world.archetypes,
&self.world.components,
&mut self.world.storages,
self.location.archetype_id,
change_tick,
);
// SAFETY: location matches current entity. `T` matches `bundle_info`
unsafe {
self.location = bundle_inserter.insert(self.entity, self.location, bundle);
}
self
}
/// Inserts a dynamic [`Component`] into the entity.
///
/// This will overwrite any previous value(s) of the same component type.
///
/// You should prefer to use the typed API [`EntityWorldMut::insert`] where possible.
///
/// # Safety
///
/// - [`ComponentId`] must be from the same world as [`EntityWorldMut`]
/// - [`OwningPtr`] must be a valid reference to the type represented by [`ComponentId`]
pub unsafe fn insert_by_id(
&mut self,
component_id: ComponentId,
component: OwningPtr<'_>,
) -> &mut Self {
let change_tick = self.world.change_tick();
let bundles = &mut self.world.bundles;
let components = &mut self.world.components;
let (bundle_info, storage_type) = bundles.init_component_info(components, component_id);
let bundle_inserter = bundle_info.get_bundle_inserter(
&mut self.world.entities,
&mut self.world.archetypes,
&self.world.components,
&mut self.world.storages,
self.location.archetype_id,
change_tick,
);
self.location = insert_dynamic_bundle(
bundle_inserter,
self.entity,
self.location,
Some(component).into_iter(),
Some(storage_type).into_iter(),
);
self
}
/// Inserts a dynamic [`Bundle`] into the entity.
///
/// This will overwrite any previous value(s) of the same component type.
///
/// You should prefer to use the typed API [`EntityWorldMut::insert`] where possible.
/// If your [`Bundle`] only has one component, use the cached API [`EntityWorldMut::insert_by_id`].
///
/// If possible, pass a sorted slice of `ComponentId` to maximize caching potential.
///
/// # Safety
/// - Each [`ComponentId`] must be from the same world as [`EntityWorldMut`]
/// - Each [`OwningPtr`] must be a valid reference to the type represented by [`ComponentId`]
pub unsafe fn insert_by_ids<'a, I: Iterator<Item = OwningPtr<'a>>>(
&mut self,
component_ids: &[ComponentId],
iter_components: I,
) -> &mut Self {
let change_tick = self.world.change_tick();
let bundles = &mut self.world.bundles;
let components = &mut self.world.components;
let (bundle_info, storage_types) = bundles.init_dynamic_info(components, component_ids);
let bundle_inserter = bundle_info.get_bundle_inserter(
&mut self.world.entities,
&mut self.world.archetypes,
&self.world.components,
&mut self.world.storages,
self.location.archetype_id,
change_tick,
);
self.location = insert_dynamic_bundle(
bundle_inserter,
self.entity,
self.location,
iter_components,
storage_types.iter().cloned(),
);
self
}
/// Removes all components in the [`Bundle`] from the entity and returns their previous values.
///
/// **Note:** If the entity does not have every component in the bundle, this method will not
/// remove any of them.
// TODO: BundleRemover?
#[must_use]
pub fn take<T: Bundle>(&mut self) -> Option<T> {
let archetypes = &mut self.world.archetypes;
let storages = &mut self.world.storages;
let components = &mut self.world.components;
let entities = &mut self.world.entities;
let removed_components = &mut self.world.removed_components;
let bundle_info = self.world.bundles.init_info::<T>(components, storages);
let old_location = self.location;
// SAFETY: `archetype_id` exists because it is referenced in the old `EntityLocation` which is valid,
// components exist in `bundle_info` because `Bundles::init_info` initializes a `BundleInfo` containing all components of the bundle type `T`
let new_archetype_id = unsafe {
remove_bundle_from_archetype(
archetypes,
storages,
components,
old_location.archetype_id,
bundle_info,
false,
)?
};
if new_archetype_id == old_location.archetype_id {
return None;
}
let mut bundle_components = bundle_info.components().iter().cloned();
let entity = self.entity;
// SAFETY: bundle components are iterated in order, which guarantees that the component type
// matches
let result = unsafe {
T::from_components(storages, &mut |storages| {
let component_id = bundle_components.next().unwrap();
// SAFETY:
// - entity location is valid
// - table row is removed below, without dropping the contents
// - `components` comes from the same world as `storages`
take_component(
storages,
components,
removed_components,
component_id,
entity,
old_location,
)
})
};
#[allow(clippy::undocumented_unsafe_blocks)] // TODO: document why this is safe
unsafe {
Self::move_entity_from_remove::<false>(
entity,
&mut self.location,
old_location.archetype_id,
old_location,
entities,
archetypes,
storages,
new_archetype_id,
);
}
Some(result)
}
/// Safety: `new_archetype_id` must have the same or a subset of the components
/// in `old_archetype_id`. Probably more safety stuff too, audit a call to
/// this fn as if the code here was written inline
///
/// when DROP is true removed components will be dropped otherwise they will be forgotten
///
// We use a const generic here so that we are less reliant on
// inlining for rustc to optimize out the `match DROP`
#[allow(clippy::too_many_arguments)]
unsafe fn move_entity_from_remove<const DROP: bool>(
entity: Entity,
self_location: &mut EntityLocation,
old_archetype_id: ArchetypeId,
old_location: EntityLocation,
entities: &mut Entities,
archetypes: &mut Archetypes,
storages: &mut Storages,
new_archetype_id: ArchetypeId,
) {
let old_archetype = &mut archetypes[old_archetype_id];
let remove_result = old_archetype.swap_remove(old_location.archetype_row);
// if an entity was moved into this entity's archetype row, update its archetype row
if let Some(swapped_entity) = remove_result.swapped_entity {
let swapped_location = entities.get(swapped_entity).unwrap();
entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: old_location.archetype_row,
table_id: swapped_location.table_id,
table_row: swapped_location.table_row,
},
);
}
let old_table_row = remove_result.table_row;
let old_table_id = old_archetype.table_id();
let new_archetype = &mut archetypes[new_archetype_id];
let new_location = if old_table_id == new_archetype.table_id() {
new_archetype.allocate(entity, old_table_row)
} else {
let (old_table, new_table) = storages
.tables
.get_2_mut(old_table_id, new_archetype.table_id());
// SAFETY: old_table_row exists
let move_result = if DROP {
old_table.move_to_and_drop_missing_unchecked(old_table_row, new_table)
} else {
old_table.move_to_and_forget_missing_unchecked(old_table_row, new_table)
};
// SAFETY: move_result.new_row is a valid position in new_archetype's table
let new_location = new_archetype.allocate(entity, move_result.new_row);
// if an entity was moved into this entity's table row, update its table row
if let Some(swapped_entity) = move_result.swapped_entity {
let swapped_location = entities.get(swapped_entity).unwrap();
entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: swapped_location.archetype_row,
table_id: swapped_location.table_id,
table_row: old_location.table_row,
},
);
archetypes[swapped_location.archetype_id]
.set_entity_table_row(swapped_location.archetype_row, old_table_row);
}
new_location
};
*self_location = new_location;
// SAFETY: The entity is valid and has been moved to the new location already.
entities.set(entity.index(), new_location);
}
/// Removes any components in the [`Bundle`] from the entity.
// TODO: BundleRemover?
pub fn remove<T: Bundle>(&mut self) -> &mut Self {
let archetypes = &mut self.world.archetypes;
let storages = &mut self.world.storages;
let components = &mut self.world.components;
let entities = &mut self.world.entities;
let removed_components = &mut self.world.removed_components;
let bundle_info = self.world.bundles.init_info::<T>(components, storages);
let old_location = self.location;
// SAFETY: `archetype_id` exists because it is referenced in the old `EntityLocation` which is valid,
// components exist in `bundle_info` because `Bundles::init_info` initializes a `BundleInfo` containing all components of the bundle type `T`
let new_archetype_id = unsafe {
remove_bundle_from_archetype(
archetypes,
storages,
components,
old_location.archetype_id,
bundle_info,
true,
)
.expect("intersections should always return a result")
};
if new_archetype_id == old_location.archetype_id {
return self;
}
let old_archetype = &mut archetypes[old_location.archetype_id];
let entity = self.entity;
for component_id in bundle_info.components().iter().cloned() {
if old_archetype.contains(component_id) {
removed_components.send(component_id, entity);
// Make sure to drop components stored in sparse sets.
// Dense components are dropped later in `move_to_and_drop_missing_unchecked`.
if let Some(StorageType::SparseSet) = old_archetype.get_storage_type(component_id) {
storages
.sparse_sets
.get_mut(component_id)
.unwrap()
.remove(entity);
}
}
}
#[allow(clippy::undocumented_unsafe_blocks)] // TODO: document why this is safe
unsafe {
Self::move_entity_from_remove::<true>(
entity,
&mut self.location,
old_location.archetype_id,
old_location,
entities,
archetypes,
storages,
new_archetype_id,
);
}
self
}
/// Despawns the current entity.
pub fn despawn(self) {
debug!("Despawning entity {:?}", self.entity);
let world = self.world;
world.flush();
let location = world
.entities
.free(self.entity)
.expect("entity should exist at this point.");
let table_row;
let moved_entity;
{
let archetype = &mut world.archetypes[location.archetype_id];
for component_id in archetype.components() {
world.removed_components.send(component_id, self.entity);
}
let remove_result = archetype.swap_remove(location.archetype_row);
if let Some(swapped_entity) = remove_result.swapped_entity {
let swapped_location = world.entities.get(swapped_entity).unwrap();
// SAFETY: swapped_entity is valid and the swapped entity's components are
// moved to the new location immediately after.
unsafe {
world.entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: location.archetype_row,
table_id: swapped_location.table_id,
table_row: swapped_location.table_row,
},
);
}
}
table_row = remove_result.table_row;
for component_id in archetype.sparse_set_components() {
let sparse_set = world.storages.sparse_sets.get_mut(component_id).unwrap();
sparse_set.remove(self.entity);
}
// SAFETY: table rows stored in archetypes always exist
moved_entity = unsafe {
world.storages.tables[archetype.table_id()].swap_remove_unchecked(table_row)
};
};
if let Some(moved_entity) = moved_entity {
let moved_location = world.entities.get(moved_entity).unwrap();
// SAFETY: `moved_entity` is valid and the provided `EntityLocation` accurately reflects
// the current location of the entity and its component data.
unsafe {
world.entities.set(
moved_entity.index(),
EntityLocation {
archetype_id: moved_location.archetype_id,
archetype_row: moved_location.archetype_row,
table_id: moved_location.table_id,
table_row,
},
);
}
world.archetypes[moved_location.archetype_id]
.set_entity_table_row(moved_location.archetype_row, table_row);
}
}
/// Gets read-only access to the world that the current entity belongs to.
#[inline]
pub fn world(&self) -> &World {
self.world
}
/// Returns this entity's world.
///
/// See [`EntityWorldMut::world_scope`] or [`EntityWorldMut::into_world_mut`] for a safe alternative.
///
/// # Safety
/// Caller must not modify the world in a way that changes the current entity's location
/// If the caller _does_ do something that could change the location, `self.update_location()`
/// must be called before using any other methods on this [`EntityWorldMut`].
#[inline]
pub unsafe fn world_mut(&mut self) -> &mut World {
self.world
}
/// Returns this entity's [`World`], consuming itself.
#[inline]
pub fn into_world_mut(self) -> &'w mut World {
self.world
}
/// Gives mutable access to this entity's [`World`] in a temporary scope.
/// This is a safe alternative to using [`EntityWorldMut::world_mut`].
///
/// # Examples
///
/// ```
/// # use bevy_ecs::prelude::*;
/// #[derive(Resource, Default, Clone, Copy)]
/// struct R(u32);
///
/// # let mut world = World::new();
/// # world.init_resource::<R>();
/// # let mut entity = world.spawn_empty();
/// // This closure gives us temporary access to the world.
/// let new_r = entity.world_scope(|world: &mut World| {
/// // Mutate the world while we have access to it.
/// let mut r = world.resource_mut::<R>();
/// r.0 += 1;
///
/// // Return a value from the world before giving it back to the `EntityWorldMut`.
/// *r
/// });
/// # assert_eq!(new_r.0, 1);
/// ```
pub fn world_scope<U>(&mut self, f: impl FnOnce(&mut World) -> U) -> U {
struct Guard<'w, 'a> {
entity_mut: &'a mut EntityWorldMut<'w>,
}
impl Drop for Guard<'_, '_> {
#[inline]
fn drop(&mut self) {
self.entity_mut.update_location();
}
}
// When `guard` is dropped at the end of this scope,
// it will update the cached `EntityLocation` for this instance.
// This will run even in case the closure `f` unwinds.
let guard = Guard { entity_mut: self };
f(guard.entity_mut.world)
}
/// Updates the internal entity location to match the current location in the internal
/// [`World`].
///
/// This is *only* required when using the unsafe function [`EntityWorldMut::world_mut`],
/// which enables the location to change.
pub fn update_location(&mut self) {
self.location = self.world.entities().get(self.entity).unwrap();
}
}
/// Inserts a dynamic [`Bundle`] into the entity.
///
/// # Safety
///
/// - [`OwningPtr`] and [`StorageType`] iterators must correspond to the
/// [`BundleInfo`] used to construct [`BundleInserter`]
/// - [`Entity`] must correspond to [`EntityLocation`]
unsafe fn insert_dynamic_bundle<
'a,
I: Iterator<Item = OwningPtr<'a>>,
S: Iterator<Item = StorageType>,
>(
mut bundle_inserter: BundleInserter<'_, '_>,
entity: Entity,
location: EntityLocation,
components: I,
storage_types: S,
) -> EntityLocation {
struct DynamicInsertBundle<'a, I: Iterator<Item = (StorageType, OwningPtr<'a>)>> {
components: I,
}
impl<'a, I: Iterator<Item = (StorageType, OwningPtr<'a>)>> DynamicBundle
for DynamicInsertBundle<'a, I>
{
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>)) {
self.components.for_each(|(t, ptr)| func(t, ptr));
}
}
let bundle = DynamicInsertBundle {
components: storage_types.zip(components),
};
// SAFETY: location matches current entity.
unsafe { bundle_inserter.insert(entity, location, bundle) }
}
/// Removes a bundle from the given archetype and returns the resulting archetype (or None if the
/// removal was invalid). in the event that adding the given bundle does not result in an Archetype
/// change. Results are cached in the Archetype Graph to avoid redundant work.
/// if `intersection` is false, attempting to remove a bundle with components _not_ contained in the
/// current archetype will fail, returning None. if `intersection` is true, components in the bundle
/// but not in the current archetype will be ignored
///
/// # Safety
/// `archetype_id` must exist and components in `bundle_info` must exist
unsafe fn remove_bundle_from_archetype(
archetypes: &mut Archetypes,
storages: &mut Storages,
components: &Components,
archetype_id: ArchetypeId,
bundle_info: &BundleInfo,
intersection: bool,
) -> Option<ArchetypeId> {
// check the archetype graph to see if the Bundle has been removed from this archetype in the
// past
let remove_bundle_result = {
let edges = archetypes[archetype_id].edges();
if intersection {
edges.get_remove_bundle(bundle_info.id())
} else {
edges.get_take_bundle(bundle_info.id())
}
};
let result = if let Some(result) = remove_bundle_result {
// this Bundle removal result is cached. just return that!
result
} else {
let mut next_table_components;
let mut next_sparse_set_components;
let next_table_id;
{
let current_archetype = &mut archetypes[archetype_id];
let mut removed_table_components = Vec::new();
let mut removed_sparse_set_components = Vec::new();
for component_id in bundle_info.components().iter().cloned() {
if current_archetype.contains(component_id) {
// SAFETY: bundle components were already initialized by bundles.get_info
let component_info = components.get_info_unchecked(component_id);
match component_info.storage_type() {
StorageType::Table => removed_table_components.push(component_id),
StorageType::SparseSet => removed_sparse_set_components.push(component_id),
}
} else if !intersection {
// a component in the bundle was not present in the entity's archetype, so this
// removal is invalid cache the result in the archetype
// graph
current_archetype
.edges_mut()
.insert_take_bundle(bundle_info.id(), None);
return None;
}
}
// sort removed components so we can do an efficient "sorted remove". archetype
// components are already sorted
removed_table_components.sort();
removed_sparse_set_components.sort();
next_table_components = current_archetype.table_components().collect();
next_sparse_set_components = current_archetype.sparse_set_components().collect();
sorted_remove(&mut next_table_components, &removed_table_components);
sorted_remove(
&mut next_sparse_set_components,
&removed_sparse_set_components,
);
next_table_id = if removed_table_components.is_empty() {
current_archetype.table_id()
} else {
// SAFETY: all components in next_table_components exist
storages
.tables
.get_id_or_insert(&next_table_components, components)
};
}
let new_archetype_id = archetypes.get_id_or_insert(
next_table_id,
next_table_components,
next_sparse_set_components,
);
Some(new_archetype_id)
};
let current_archetype = &mut archetypes[archetype_id];
// cache the result in an edge
if intersection {
current_archetype
.edges_mut()
.insert_remove_bundle(bundle_info.id(), result);
} else {
current_archetype
.edges_mut()
.insert_take_bundle(bundle_info.id(), result);
}
result
}
fn sorted_remove<T: Eq + Ord + Copy>(source: &mut Vec<T>, remove: &[T]) {
let mut remove_index = 0;
source.retain(|value| {
while remove_index < remove.len() && *value > remove[remove_index] {
remove_index += 1;
}
if remove_index < remove.len() {
*value != remove[remove_index]
} else {
true
}
});
}
/// Moves component data out of storage.
///
/// This function leaves the underlying memory unchanged, but the component behind
/// returned pointer is semantically owned by the caller and will not be dropped in its original location.
/// Caller is responsible to drop component data behind returned pointer.
///
/// # Safety
/// - `location.table_row` must be in bounds of column of component id `component_id`
/// - `component_id` must be valid
/// - `components` must come from the same world as `self`
/// - The relevant table row **must be removed** by the caller once all components are taken, without dropping the value
#[inline]
pub(crate) unsafe fn take_component<'a>(
storages: &'a mut Storages,
components: &Components,
removed_components: &mut RemovedComponentEvents,
component_id: ComponentId,
entity: Entity,
location: EntityLocation,
) -> OwningPtr<'a> {
// SAFETY: caller promises component_id to be valid
let component_info = components.get_info_unchecked(component_id);
removed_components.send(component_id, entity);
match component_info.storage_type() {
StorageType::Table => {
let table = &mut storages.tables[location.table_id];
let components = table.get_column_mut(component_id).unwrap();
// SAFETY:
// - archetypes only store valid table_rows
// - index is in bounds as promised by caller
// - promote is safe because the caller promises to remove the table row without dropping it immediately afterwards
components
.get_data_unchecked_mut(location.table_row)
.promote()
}
StorageType::SparseSet => storages
.sparse_sets
.get_mut(component_id)
.unwrap()
.remove_and_forget(entity)
.unwrap(),
}
}
#[cfg(test)]
mod tests {
use bevy_ptr::OwningPtr;
use std::panic::AssertUnwindSafe;
use crate::{self as bevy_ecs, component::ComponentId, prelude::*, system::assert_is_system};
#[test]
fn sorted_remove() {
let mut a = vec![1, 2, 3, 4, 5, 6, 7];
let b = vec![1, 2, 3, 5, 7];
super::sorted_remove(&mut a, &b);
assert_eq!(a, vec![4, 6]);
let mut a = vec![1];
let b = vec![1];
super::sorted_remove(&mut a, &b);
assert_eq!(a, vec![]);
let mut a = vec![1];
let b = vec![2];
super::sorted_remove(&mut a, &b);
assert_eq!(a, vec![1]);
}
#[derive(Component, Clone, Copy, Debug, PartialEq)]
struct TestComponent(u32);
#[derive(Component, Clone, Copy, Debug, PartialEq)]
#[component(storage = "SparseSet")]
struct TestComponent2(u32);
#[test]
fn entity_ref_get_by_id() {
let mut world = World::new();
let entity = world.spawn(TestComponent(42)).id();
let component_id = world
.components()
.get_id(std::any::TypeId::of::<TestComponent>())
.unwrap();
let entity = world.entity(entity);
let test_component = entity.get_by_id(component_id).unwrap();
// SAFETY: points to a valid `TestComponent`
let test_component = unsafe { test_component.deref::<TestComponent>() };
assert_eq!(test_component.0, 42);
}
#[test]
fn entity_mut_get_by_id() {
let mut world = World::new();
let entity = world.spawn(TestComponent(42)).id();
let component_id = world
.components()
.get_id(std::any::TypeId::of::<TestComponent>())
.unwrap();
let mut entity_mut = world.entity_mut(entity);
let mut test_component = entity_mut.get_mut_by_id(component_id).unwrap();
{
test_component.set_changed();
let test_component =
// SAFETY: `test_component` has unique access of the `EntityWorldMut` and is not used afterwards
unsafe { test_component.into_inner().deref_mut::<TestComponent>() };
test_component.0 = 43;
}
let entity = world.entity(entity);
let test_component = entity.get_by_id(component_id).unwrap();
// SAFETY: `TestComponent` is the correct component type
let test_component = unsafe { test_component.deref::<TestComponent>() };
assert_eq!(test_component.0, 43);
}
#[test]
fn entity_ref_get_by_id_invalid_component_id() {
let invalid_component_id = ComponentId::new(usize::MAX);
let mut world = World::new();
let entity = world.spawn_empty().id();
let entity = world.entity(entity);
assert!(entity.get_by_id(invalid_component_id).is_none());
}
#[test]
fn entity_mut_get_by_id_invalid_component_id() {
let invalid_component_id = ComponentId::new(usize::MAX);
let mut world = World::new();
let mut entity = world.spawn_empty();
assert!(entity.get_by_id(invalid_component_id).is_none());
assert!(entity.get_mut_by_id(invalid_component_id).is_none());
}
// regression test for https://github.com/bevyengine/bevy/pull/7387
#[test]
fn entity_mut_world_scope_panic() {
let mut world = World::new();
let mut entity = world.spawn_empty();
let old_location = entity.location();
let id = entity.id();
let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
entity.world_scope(|w| {
// Change the entity's `EntityLocation`, which invalidates the original `EntityWorldMut`.
// This will get updated at the end of the scope.
w.entity_mut(id).insert(TestComponent(0));
// Ensure that the entity location still gets updated even in case of a panic.
panic!("this should get caught by the outer scope")
});
}));
assert!(res.is_err());
// Ensure that the location has been properly updated.
assert!(entity.location() != old_location);
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn removing_sparse_updates_archetype_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn((Dense(0), Sparse)).id();
let e2 = world.spawn((Dense(1), Sparse)).id();
world.entity_mut(e1).remove::<Sparse>();
assert_eq!(world.entity(e2).get::<Dense>().unwrap(), &Dense(1));
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn removing_dense_updates_table_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn((Dense(0), Sparse)).id();
let e2 = world.spawn((Dense(1), Sparse)).id();
world.entity_mut(e1).remove::<Dense>();
assert_eq!(world.entity(e2).get::<Dense>().unwrap(), &Dense(1));
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn inserting_sparse_updates_archetype_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn(Dense(0)).id();
let e2 = world.spawn(Dense(1)).id();
world.entity_mut(e1).insert(Sparse);
assert_eq!(world.entity(e2).get::<Dense>().unwrap(), &Dense(1));
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn inserting_dense_updates_archetype_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
struct Dense2;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn(Dense(0)).id();
let e2 = world.spawn(Dense(1)).id();
world.entity_mut(e1).insert(Sparse).remove::<Sparse>();
// archetype with [e2, e1]
// table with [e1, e2]
world.entity_mut(e2).insert(Dense2);
assert_eq!(world.entity(e1).get::<Dense>().unwrap(), &Dense(0));
}
#[test]
fn inserting_dense_updates_table_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
struct Dense2;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn(Dense(0)).id();
let e2 = world.spawn(Dense(1)).id();
world.entity_mut(e1).insert(Sparse).remove::<Sparse>();
// archetype with [e2, e1]
// table with [e1, e2]
world.entity_mut(e1).insert(Dense2);
assert_eq!(world.entity(e2).get::<Dense>().unwrap(), &Dense(1));
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn despawning_entity_updates_archetype_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn(Dense(0)).id();
let e2 = world.spawn(Dense(1)).id();
world.entity_mut(e1).insert(Sparse).remove::<Sparse>();
// archetype with [e2, e1]
// table with [e1, e2]
world.entity_mut(e2).despawn();
assert_eq!(world.entity(e1).get::<Dense>().unwrap(), &Dense(0));
}
// regression test for https://github.com/bevyengine/bevy/pull/7805
#[test]
fn despawning_entity_updates_table_row() {
#[derive(Component, PartialEq, Debug)]
struct Dense(u8);
#[derive(Component)]
#[component(storage = "SparseSet")]
struct Sparse;
let mut world = World::new();
let e1 = world.spawn(Dense(0)).id();
let e2 = world.spawn(Dense(1)).id();
world.entity_mut(e1).insert(Sparse).remove::<Sparse>();
// archetype with [e2, e1]
// table with [e1, e2]
world.entity_mut(e1).despawn();
assert_eq!(world.entity(e2).get::<Dense>().unwrap(), &Dense(1));
}
#[test]
fn entity_mut_insert_by_id() {
let mut world = World::new();
let test_component_id = world.init_component::<TestComponent>();
let mut entity = world.spawn_empty();
OwningPtr::make(TestComponent(42), |ptr| {
// SAFETY: `ptr` matches the component id
unsafe { entity.insert_by_id(test_component_id, ptr) };
});
let components: Vec<_> = world.query::<&TestComponent>().iter(&world).collect();
assert_eq!(components, vec![&TestComponent(42)]);
// Compare with `insert_bundle_by_id`
let mut entity = world.spawn_empty();
OwningPtr::make(TestComponent(84), |ptr| {
// SAFETY: `ptr` matches the component id
unsafe { entity.insert_by_ids(&[test_component_id], vec![ptr].into_iter()) };
});
let components: Vec<_> = world.query::<&TestComponent>().iter(&world).collect();
assert_eq!(components, vec![&TestComponent(42), &TestComponent(84)]);
}
#[test]
fn entity_mut_insert_bundle_by_id() {
let mut world = World::new();
let test_component_id = world.init_component::<TestComponent>();
let test_component_2_id = world.init_component::<TestComponent2>();
let component_ids = [test_component_id, test_component_2_id];
let test_component_value = TestComponent(42);
let test_component_2_value = TestComponent2(84);
let mut entity = world.spawn_empty();
OwningPtr::make(test_component_value, |ptr1| {
OwningPtr::make(test_component_2_value, |ptr2| {
// SAFETY: `ptr1` and `ptr2` match the component ids
unsafe { entity.insert_by_ids(&component_ids, vec![ptr1, ptr2].into_iter()) };
});
});
let dynamic_components: Vec<_> = world
.query::<(&TestComponent, &TestComponent2)>()
.iter(&world)
.collect();
assert_eq!(
dynamic_components,
vec![(&TestComponent(42), &TestComponent2(84))]
);
// Compare with `World` generated using static type equivalents
let mut static_world = World::new();
static_world.spawn((test_component_value, test_component_2_value));
let static_components: Vec<_> = static_world
.query::<(&TestComponent, &TestComponent2)>()
.iter(&static_world)
.collect();
assert_eq!(dynamic_components, static_components);
}
#[derive(Component)]
struct A;
#[derive(Resource)]
struct R;
#[test]
fn disjoint_access() {
fn disjoint_readonly(_: Query<EntityMut, With<A>>, _: Query<EntityRef, Without<A>>) {}
fn disjoint_mutable(_: Query<EntityMut, With<A>>, _: Query<EntityMut, Without<A>>) {}
assert_is_system(disjoint_readonly);
assert_is_system(disjoint_mutable);
}
#[test]
fn ref_compatible() {
fn borrow_system(_: Query<(EntityRef, &A)>, _: Query<&A>) {}
assert_is_system(borrow_system);
}
#[test]
fn ref_compatible_with_resource() {
fn borrow_system(_: Query<EntityRef>, _: Res<R>) {}
assert_is_system(borrow_system);
}
#[test]
#[ignore] // This should pass, but it currently fails due to limitations in our access model.
fn ref_compatible_with_resource_mut() {
fn borrow_system(_: Query<EntityRef>, _: ResMut<R>) {}
assert_is_system(borrow_system);
}
#[test]
#[should_panic]
fn ref_incompatible_with_mutable_component() {
fn incompatible_system(_: Query<(EntityRef, &mut A)>) {}
assert_is_system(incompatible_system);
}
#[test]
#[should_panic]
fn ref_incompatible_with_mutable_query() {
fn incompatible_system(_: Query<EntityRef>, _: Query<&mut A>) {}
assert_is_system(incompatible_system);
}
#[test]
fn mut_compatible_with_entity() {
fn borrow_mut_system(_: Query<(Entity, EntityMut)>) {}
assert_is_system(borrow_mut_system);
}
#[test]
#[ignore] // This should pass, but it currently fails due to limitations in our access model.
fn mut_compatible_with_resource() {
fn borrow_mut_system(_: Res<R>, _: Query<EntityMut>) {}
assert_is_system(borrow_mut_system);
}
#[test]
#[ignore] // This should pass, but it currently fails due to limitations in our access model.
fn mut_compatible_with_resource_mut() {
fn borrow_mut_system(_: ResMut<R>, _: Query<EntityMut>) {}
assert_is_system(borrow_mut_system);
}
#[test]
#[should_panic]
fn mut_incompatible_with_read_only_component() {
fn incompatible_system(_: Query<(EntityMut, &A)>) {}
assert_is_system(incompatible_system);
}
#[test]
#[should_panic]
fn mut_incompatible_with_mutable_component() {
fn incompatible_system(_: Query<(EntityMut, &mut A)>) {}
assert_is_system(incompatible_system);
}
#[test]
#[should_panic]
fn mut_incompatible_with_read_only_query() {
fn incompatible_system(_: Query<EntityMut>, _: Query<&A>) {}
assert_is_system(incompatible_system);
}
#[test]
#[should_panic]
fn mut_incompatible_with_mutable_query() {
fn incompatible_system(_: Query<EntityMut>, _: Query<&mut A>) {}
assert_is_system(incompatible_system);
}
}