f8f8bdd4aa
# Objective - We introduce a gizmo that displays coordinate axes relative to a Transform*, primarily for debugging purposes. - See #9400 ## Solution A new method, `Gizmos::axes`, takes a `Transform`* as input and displays the standard coordinate axes, transformed according to it; its signature looks like this: ````rust pub fn axes(&mut self, transform: into TransformPoint, base_length: f32) { //... } ```` If my carefully placed asterisks hadn't already tipped you off, the argument here is not actually a `Transform` but instead anything which implements `TransformPoint`, which allows it to work also with `GlobalTransform` (and also `Mat4` and `Affine3A`, if the user happens to be hand-rolling transformations in some way). The `base_length` parameter is a scaling factor applied to the coordinate vectors before the transformation takes place; in other words, the caller can use this to help size the coordinate axes appropriately for the entity that they are attached to. An example invocation of this method looks something like this: ````rust fn draw_axes_system( mut gizmos: Gizmos, query: Query<&Transform, With<MyMarkerComponent>>, ) { for &transform in &query { gizmos.axes(transform, 2.); } } ```` The result is the three coordinate axes, X, Y, Z (colored red, green, and blue, respectively), drawn onto the entity: <img width="206" alt="Screenshot 2024-02-29 at 2 41 45 PM" src="https://github.com/bevyengine/bevy/assets/2975848/789d1703-29ae-4295-80ab-b87459cf8037"> Note that, if scaling was applied as part of the given transformation, it shows up in scaling on the axes as well: <img width="377" alt="Screenshot 2024-02-29 at 2 43 53 PM" src="https://github.com/bevyengine/bevy/assets/2975848/6dc1caf4-8b3e-47f7-a86a-8906d870fa72"> --- ## Changelog - Added `Gizmos::axes` in bevy_gizmos/src/arrows.rs - Fixed a minor issue with `ArrowBuilder::with_tip_length` not correctly implementing builder style (no external impact) --- ## Discussion ### Design considerations I feel pretty strongly that having no default length scale is for the best, at least for the time being, since it's very easy for the length scale to be too small, leading to the axes being hidden inside the body of the object they are associated with. That is, if the API instead looked like this: ````rust gizmos.axes(transform); // or gizmos.axes(transform).with_length_scale(3.0); ```` then I think it's a reasonable expectation that the first thing would "just work" for most applications, and it wouldn't, which would be kind of a footgun. ### Future steps There are a few directions that this might expand in the future: 1. Introduce additional options via the standard builder pattern; i.e. introducing `AxesBuilder<T: TransformPoint>` so that people can configure the axis colors, normalize all axes to a fixed length independent of scale deformations, etc. 2. Fold this functionality into a plugin (like AabbGizmoPlugin) so that the functionality becomes more-or-less automatic based on certain fixed marker components. This wouldn't be very hard to implement, and it has the benefit of making the axes more frictionless to use. Furthermore, if we coupled this to the AABB functionality we already have, we could also ensure that the plugin automatically sizes the axes (by coupling their size to the dimensions of the AABB, for example). 3. Implement something similar for 2d. Honestly, I have no idea if this is desired/useful, but I could probably just implement it in this PR if that's the case. |
||
---|---|---|
.cargo | ||
.github | ||
assets | ||
benches | ||
crates | ||
docs | ||
docs-template | ||
errors | ||
examples | ||
src | ||
tests | ||
tools | ||
.gitattributes | ||
.gitignore | ||
Cargo.toml | ||
CHANGELOG.md | ||
clippy.toml | ||
CODE_OF_CONDUCT.md | ||
CONTRIBUTING.md | ||
CREDITS.md | ||
deny.toml | ||
LICENSE-APACHE | ||
LICENSE-MIT | ||
README.md | ||
rustfmt.toml | ||
typos.toml |
What is Bevy?
Bevy is a refreshingly simple data-driven game engine built in Rust. It is free and open-source forever!
WARNING
Bevy is still in the early stages of development. Important features are missing. Documentation is sparse. A new version of Bevy containing breaking changes to the API is released approximately once every 3 months. We provide migration guides, but we can't guarantee migrations will always be easy. Use only if you are willing to work in this environment.
MSRV: Bevy relies heavily on improvements in the Rust language and compiler. As a result, the Minimum Supported Rust Version (MSRV) is generally close to "the latest stable release" of Rust.
Design Goals
- Capable: Offer a complete 2D and 3D feature set
- Simple: Easy for newbies to pick up, but infinitely flexible for power users
- Data Focused: Data-oriented architecture using the Entity Component System paradigm
- Modular: Use only what you need. Replace what you don't like
- Fast: App logic should run quickly, and when possible, in parallel
- Productive: Changes should compile quickly ... waiting isn't fun
About
- Features: A quick overview of Bevy's features.
- News: A development blog that covers our progress, plans and shiny new features.
Docs
- Quick Start Guide: Bevy's official Quick Start Guide. The best place to start learning Bevy.
- Bevy Rust API Docs: Bevy's Rust API docs, which are automatically generated from the doc comments in this repo.
- Official Examples: Bevy's dedicated, runnable examples, which are great for digging into specific concepts.
- Community-Made Learning Resources: More tutorials, documentation, and examples made by the Bevy community.
Community
Before contributing or participating in discussions with the community, you should familiarize yourself with our Code of Conduct.
- Discord: Bevy's official discord server.
- Reddit: Bevy's official subreddit.
- GitHub Discussions: The best place for questions about Bevy, answered right here!
- Bevy Assets: A collection of awesome Bevy projects, tools, plugins and learning materials.
Contributing
If you'd like to help build Bevy, check out the Contributor's Guide. For simple problems, feel free to open an issue or PR and tackle it yourself!
For more complex architecture decisions and experimental mad science, please open an RFC (Request For Comments) so we can brainstorm together effectively!
Getting Started
We recommend checking out the Quick Start Guide for a brief introduction.
Follow the Setup guide to ensure your development environment is set up correctly. Once set up, you can quickly try out the examples by cloning this repo and running the following commands:
# Switch to the correct version (latest release, default is main development branch)
git checkout latest
# Runs the "breakout" example
cargo run --example breakout
To draw a window with standard functionality enabled, use:
use bevy::prelude::*;
fn main(){
App::new()
.add_plugins(DefaultPlugins)
.run();
}
Fast Compiles
Bevy can be built just fine using default configuration on stable Rust. However for really fast iterative compiles, you should enable the "fast compiles" setup by following the instructions here.
Bevy Cargo Features
This list outlines the different cargo features supported by Bevy. These allow you to customize the Bevy feature set for your use-case.
Thanks
Bevy is the result of the hard work of many people. A huge thanks to all Bevy contributors, the many open source projects that have come before us, the Rust gamedev ecosystem, and the many libraries we build on.
A huge thanks to Bevy's generous sponsors. Bevy will always be free and open source, but it isn't free to make. Please consider sponsoring our work if you like what we're building.
This project is tested with BrowserStack.
License
Bevy is free, open source and permissively licensed! Except where noted (below and/or in individual files), all code in this repository is dual-licensed under either:
- MIT License (LICENSE-MIT or http://opensource.org/licenses/MIT)
- Apache License, Version 2.0 (LICENSE-APACHE or http://www.apache.org/licenses/LICENSE-2.0)
at your option. This means you can select the license you prefer! This dual-licensing approach is the de-facto standard in the Rust ecosystem and there are very good reasons to include both.
Some of the engine's code carries additional copyright notices and license terms due to their external origins.
These are generally BSD-like, but exact details vary by crate:
If the README of a crate contains a 'License' header (or similar), the additional copyright notices and license terms applicable to that crate will be listed.
The above licensing requirement still applies to contributions to those crates, and sections of those crates will carry those license terms.
The license field of each crate will also reflect this.
For example, bevy_mikktspace
has code under the Zlib license (as well as a copyright notice when choosing the MIT license).
The assets included in this repository (for our examples) typically fall under different open licenses. These will not be included in your game (unless copied in by you), and they are not distributed in the published bevy crates. See CREDITS.md for the details of the licenses of those files.
Your contributions
Unless you explicitly state otherwise, any contribution intentionally submitted for inclusion in the work by you, as defined in the Apache-2.0 license, shall be dual licensed as above, without any additional terms or conditions.