mirror of
https://github.com/bevyengine/bevy
synced 2024-11-29 16:10:19 +00:00
a795de30b4
# Motivation When spawning entities into a scene, it is very common to create assets like meshes and materials and to add them via asset handles. A common setup might look like this: ```rust fn setup( mut commands: Commands, mut meshes: ResMut<Assets<Mesh>>, mut materials: ResMut<Assets<StandardMaterial>>, ) { commands.spawn(PbrBundle { mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ..default() }); } ``` Let's take a closer look at the part that adds the assets using `add`. ```rust mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })), material: materials.add(StandardMaterial::from(Color::RED)), ``` Here, "mesh" and "material" are both repeated three times. It's very explicit, but I find it to be a bit verbose. In addition to being more code to read and write, the extra characters can sometimes also lead to the code being formatted to span multiple lines even though the core task, adding e.g. a primitive mesh, is extremely simple. A way to address this is by using `.into()`: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }.into()), material: materials.add(Color::RED.into()), ``` This is fine, but from the names and the type of `meshes`, we already know what the type should be. It's very clear that `Cube` should be turned into a `Mesh` because of the context it's used in. `.into()` is just seven characters, but it's so common that it quickly adds up and gets annoying. It would be nice if you could skip all of the conversion and let Bevy handle it for you: ```rust mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ``` # Objective Make adding assets more ergonomic by making `Assets::add` take an `impl Into<A>` instead of `A`. ## Solution `Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this works: ```rust commands.spawn(PbrBundle { mesh: meshes.add(shape::Cube { size: 1.0 }), material: materials.add(Color::RED), ..default() }); ``` I also changed all examples to use this API, which increases consistency as well because `Mesh::from` and `into` were being used arbitrarily even in the same file. This also gets rid of some lines of code because formatting is nicer. --- ## Changelog - `Assets::add` now takes an `impl Into<A>` instead of `A` - Examples don't use `T::from(K)` or `K.into()` when adding assets ## Migration Guide Some `into` calls that worked previously might now be broken because of the new trait bounds. You need to either remove `into` or perform the conversion explicitly with `from`: ```rust // Doesn't compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()), // These compile let mesh_handle = meshes.add(shape::Cube { size: 1.0 }), let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })), ``` ## Concerns I believe the primary concerns might be: 1. Is this too implicit? 2. Does this increase codegen bloat? Previously, the two APIs were using `into` or `from`, and now it's "nothing" or `from`. You could argue that `into` is slightly more explicit than "nothing" in cases like the earlier examples where a `Color` gets converted to e.g. a `StandardMaterial`, but I personally don't think `into` adds much value even in this case, and you could still see the actual type from the asset type. As for codegen bloat, I doubt it adds that much, but I'm not very familiar with the details of codegen. I personally value the user-facing code reduction and ergonomics improvements that these changes would provide, but it might be worth checking the other effects in more detail. Another slight concern is migration pain; apps might have a ton of `into` calls that would need to be removed, and it did take me a while to do so for Bevy itself (maybe around 20-40 minutes). However, I think the fact that there *are* so many `into` calls just highlights that the API could be made nicer, and I'd gladly migrate my own projects for it.
145 lines
5.7 KiB
Rust
145 lines
5.7 KiB
Rust
//! This example shows how to use the ECS and the [`AsyncComputeTaskPool`]
|
|
//! to spawn, poll, and complete tasks across systems and system ticks.
|
|
|
|
use bevy::{
|
|
ecs::system::{CommandQueue, SystemState},
|
|
prelude::*,
|
|
tasks::{block_on, futures_lite::future, AsyncComputeTaskPool, Task},
|
|
};
|
|
use rand::Rng;
|
|
use std::time::{Duration, Instant};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, (setup_env, add_assets, spawn_tasks))
|
|
.add_systems(Update, handle_tasks)
|
|
.run();
|
|
}
|
|
|
|
// Number of cubes to spawn across the x, y, and z axis
|
|
const NUM_CUBES: u32 = 6;
|
|
|
|
#[derive(Resource, Deref)]
|
|
struct BoxMeshHandle(Handle<Mesh>);
|
|
|
|
#[derive(Resource, Deref)]
|
|
struct BoxMaterialHandle(Handle<StandardMaterial>);
|
|
|
|
/// Startup system which runs only once and generates our Box Mesh
|
|
/// and Box Material assets, adds them to their respective Asset
|
|
/// Resources, and stores their handles as resources so we can access
|
|
/// them later when we're ready to render our Boxes
|
|
fn add_assets(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
) {
|
|
let box_mesh_handle = meshes.add(shape::Cube { size: 0.25 });
|
|
commands.insert_resource(BoxMeshHandle(box_mesh_handle));
|
|
|
|
let box_material_handle = materials.add(Color::rgb(1.0, 0.2, 0.3));
|
|
commands.insert_resource(BoxMaterialHandle(box_material_handle));
|
|
}
|
|
|
|
#[derive(Component)]
|
|
struct ComputeTransform(Task<CommandQueue>);
|
|
|
|
/// This system generates tasks simulating computationally intensive
|
|
/// work that potentially spans multiple frames/ticks. A separate
|
|
/// system, [`handle_tasks`], will poll the spawned tasks on subsequent
|
|
/// frames/ticks, and use the results to spawn cubes
|
|
fn spawn_tasks(mut commands: Commands) {
|
|
let thread_pool = AsyncComputeTaskPool::get();
|
|
for x in 0..NUM_CUBES {
|
|
for y in 0..NUM_CUBES {
|
|
for z in 0..NUM_CUBES {
|
|
// Spawn new task on the AsyncComputeTaskPool; the task will be
|
|
// executed in the background, and the Task future returned by
|
|
// spawn() can be used to poll for the result
|
|
let entity = commands.spawn_empty().id();
|
|
let task = thread_pool.spawn(async move {
|
|
let mut rng = rand::thread_rng();
|
|
let start_time = Instant::now();
|
|
let duration = Duration::from_secs_f32(rng.gen_range(0.05..0.2));
|
|
while start_time.elapsed() < duration {
|
|
// Spinning for 'duration', simulating doing hard
|
|
// compute work generating translation coords!
|
|
}
|
|
|
|
// Such hard work, all done!
|
|
let transform = Transform::from_xyz(x as f32, y as f32, z as f32);
|
|
let mut command_queue = CommandQueue::default();
|
|
|
|
// we use a raw command queue to pass a FnOne(&mut World) back to be
|
|
// applied in a deferred manner.
|
|
command_queue.push(move |world: &mut World| {
|
|
let (box_mesh_handle, box_material_handle) = {
|
|
let mut system_state = SystemState::<(
|
|
Res<BoxMeshHandle>,
|
|
Res<BoxMaterialHandle>,
|
|
)>::new(world);
|
|
let (box_mesh_handle, box_material_handle) =
|
|
system_state.get_mut(world);
|
|
|
|
(box_mesh_handle.clone(), box_material_handle.clone())
|
|
};
|
|
|
|
world
|
|
.entity_mut(entity)
|
|
// Add our new PbrBundle of components to our tagged entity
|
|
.insert(PbrBundle {
|
|
mesh: box_mesh_handle,
|
|
material: box_material_handle,
|
|
transform,
|
|
..default()
|
|
})
|
|
// Task is complete, so remove task component from entity
|
|
.remove::<ComputeTransform>();
|
|
});
|
|
|
|
command_queue
|
|
});
|
|
|
|
// Spawn new entity and add our new task as a component
|
|
commands.entity(entity).insert(ComputeTransform(task));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This system queries for entities that have our Task<Transform> component. It polls the
|
|
/// tasks to see if they're complete. If the task is complete it takes the result, adds a
|
|
/// new [`PbrBundle`] of components to the entity using the result from the task's work, and
|
|
/// removes the task component from the entity.
|
|
fn handle_tasks(mut commands: Commands, mut transform_tasks: Query<&mut ComputeTransform>) {
|
|
for mut task in &mut transform_tasks {
|
|
if let Some(mut commands_queue) = block_on(future::poll_once(&mut task.0)) {
|
|
// append the returned command queue to have it execute later
|
|
commands.append(&mut commands_queue);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This system is only used to setup light and camera for the environment
|
|
fn setup_env(mut commands: Commands) {
|
|
// Used to center camera on spawned cubes
|
|
let offset = if NUM_CUBES % 2 == 0 {
|
|
(NUM_CUBES / 2) as f32 - 0.5
|
|
} else {
|
|
(NUM_CUBES / 2) as f32
|
|
};
|
|
|
|
// lights
|
|
commands.spawn(PointLightBundle {
|
|
transform: Transform::from_xyz(4.0, 12.0, 15.0),
|
|
..default()
|
|
});
|
|
|
|
// camera
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(offset, offset, 15.0)
|
|
.looking_at(Vec3::new(offset, offset, 0.0), Vec3::Y),
|
|
..default()
|
|
});
|
|
}
|