bevy/crates/bevy_ecs/src/bundle.rs
Joona Aalto f3e8ae03cd
Runtime required components (#15458)
# Objective

Fixes #15367.

Currently, required components can only be defined through the `require`
macro attribute. While this should be used in most cases, there are also
several instances where you may want to define requirements at runtime,
commonly in plugins.

Example use cases:

- Require components only if the relevant optional plugins are enabled.
For example, a `SleepTimer` component (for physics) is only relevant if
the `SleepPlugin` is enabled.
- Third party crates can define their own requirements for first party
types. For example, "each `Handle<Mesh>` should require my custom
rendering data components". This also gets around the orphan rule.
- Generic plugins that add marker components based on the existence of
other components, like a generic `ColliderPlugin<C: AnyCollider>` that
wants to add a `ColliderMarker` component for all types of colliders.
- This is currently relevant for the retained render world in #15320.
The `ExtractComponentPlugin<C>` should add `SyncToRenderWorld` to all
components that should be extracted. This is currently done with
observers, which is more expensive than required components, and causes
archetype moves.
- Replace some built-in components with custom versions. For example, if
`GlobalTransform` required `Transform` through `TransformPlugin`, but we
wanted to use a `CustomTransform` type, we could replace
`TransformPlugin` with our own plugin. (This specific example isn't
good, but there are likely better use cases where this may be useful)

See #15367 for more in-depth reasoning.

## Solution

Add `register_required_components::<T, R>` and
`register_required_components_with::<T, R>` methods for `Default` and
custom constructors respectively. These methods exist on `App` and
`World`.

```rust
struct BirdPlugin;

impl Plugin for BirdPlugin {
    fn plugin(app: &mut App) {
        // Make `Bird` require `Wings` with a `Default` constructor.
        app.register_required_components::<Bird, Wings>();

        // Make `Wings` require `FlapSpeed` with a custom constructor.
        // Fun fact: Some hummingbirds can flutter their wings 80 times per second!
        app.register_required_components_with::<Wings, FlapSpeed>(|| FlapSpeed::from_duration(1.0 / 80.0));
    }
}
```

The custom constructor is a function pointer to match the `require` API,
though it could take a raw value too.

Requirement inheritance works similarly as with the `require` attribute.
If `Bird` required `FlapSpeed` directly, it would take precedence over
indirectly requiring it through `Wings`. The same logic applies to all
levels of the inheritance tree.

Note that registering the same component requirement more than once will
panic, similarly to trying to add multiple component hooks of the same
type to the same component. This avoids constructor conflicts and
confusing ordering issues.

### Implementation

Runtime requirements have two additional challenges in comparison to the
`require` attribute.

1. The `require` attribute uses recursion and macros with clever
ordering to populate hash maps of required components for each component
type. The expected semantics are that "more specific" requirements
override ones deeper in the inheritance tree. However, at runtime, there
is no representation of how "specific" each requirement is.
2. If you first register the requirement `X -> Y`, and later register `Y
-> Z`, then `X` should also indirectly require `Z`. However, `Y` itself
doesn't know that it is required by `X`, so it's not aware that it
should update the list of required components for `X`.

My solutions to these problems are:

1. Store the depth in the inheritance tree for each entry of a given
component's `RequiredComponents`. This is used to determine how
"specific" each requirement is. For `require`-based registration, these
depths are computed as part of the recursion.
2. Store and maintain a `required_by` list in each component's
`ComponentInfo`, next to `required_components`. For `require`-based
registration, these are also added after each registration, as part of
the recursion.

When calling `register_required_components`, it works as follows:

1. Get the required components of `Foo`, and check that `Bar` isn't
already a *direct* requirement.
3. Register `Bar` as a required component for `Foo`, and add `Foo` to
the `required_by` list for `Bar`.
4. Find and register all indirect requirements inherited from `Bar`,
adding `Foo` to the `required_by` list for each component.
5. Iterate through components that require `Foo`, registering the new
inherited requires for them as indirect requirements.

The runtime registration is likely slightly more expensive than the
`require` version, but it is a one-time cost, and quite negligible in
practice, unless projects have hundreds or thousands of runtime
requirements. I have not benchmarked this however.

This does also add a small amount of extra cost to the `require`
attribute for updating `required_by` lists, but I expect it to be very
minor.

## Testing

I added some tests that are copies of the `require` versions, as well as
some tests that are more specific to the runtime implementation. I might
add a few more tests though.

## Discussion

- Is `register_required_components` a good name? Originally I went for
`register_component_requirement` to be consistent with
`register_component_hooks`, but the general feature is often referred to
as "required components", which is why I changed it to
`register_required_components`.
- Should we *not* panic for duplicate requirements? If so, should they
just be ignored, or should the latest registration overwrite earlier
ones?
- If we do want to panic for duplicate, conflicting registrations,
should we at least not panic if the registrations are *exactly* the
same, i.e. same component and same constructor? The current
implementation panics for all duplicate direct registrations regardless
of the constructor.

## Next Steps

- Allow `register_required_components` to take a `Bundle` instead of a
single required component.
    - I could also try to do it in this PR if that would be preferable.
- Not directly related, but archetype invariants?
2024-09-30 19:20:16 +00:00

1649 lines
65 KiB
Rust

//! Types for handling [`Bundle`]s.
//!
//! This module contains the [`Bundle`] trait and some other helper types.
pub use bevy_ecs_macros::Bundle;
use crate::{
archetype::{
AddBundle, Archetype, ArchetypeId, Archetypes, BundleComponentStatus, ComponentStatus,
SpawnBundleStatus,
},
component::{
Component, ComponentId, Components, RequiredComponentConstructor, RequiredComponents,
StorageType, Tick,
},
entity::{Entities, Entity, EntityLocation},
observer::Observers,
prelude::World,
query::DebugCheckedUnwrap,
storage::{SparseSetIndex, SparseSets, Storages, Table, TableRow},
world::{unsafe_world_cell::UnsafeWorldCell, ON_ADD, ON_INSERT, ON_REPLACE},
};
use bevy_ptr::{ConstNonNull, OwningPtr};
use bevy_utils::{all_tuples, HashMap, HashSet, TypeIdMap};
#[cfg(feature = "track_change_detection")]
use core::panic::Location;
use core::{any::TypeId, ptr::NonNull};
/// The `Bundle` trait enables insertion and removal of [`Component`]s from an entity.
///
/// Implementors of the `Bundle` trait are called 'bundles'.
///
/// Each bundle represents a static set of [`Component`] types.
/// Currently, bundles can only contain one of each [`Component`], and will
/// panic once initialised if this is not met.
///
/// ## Insertion
///
/// The primary use for bundles is to add a useful collection of components to an entity.
///
/// Adding a value of bundle to an entity will add the components from the set it
/// represents to the entity.
/// The values of these components are taken from the bundle.
/// If an entity already had one of these components, the entity's original component value
/// will be overwritten.
///
/// Importantly, bundles are only their constituent set of components.
/// You **should not** use bundles as a unit of behavior.
/// The behavior of your app can only be considered in terms of components, as systems,
/// which drive the behavior of a `bevy` application, operate on combinations of
/// components.
///
/// This rule is also important because multiple bundles may contain the same component type,
/// calculated in different ways &mdash; adding both of these bundles to one entity
/// would create incoherent behavior.
/// This would be unexpected if bundles were treated as an abstraction boundary, as
/// the abstraction would be unmaintainable for these cases.
/// For example, both `Camera3dBundle` and `Camera2dBundle` contain the `CameraRenderGraph`
/// component, but specifying different render graphs to use.
/// If the bundles were both added to the same entity, only one of these two bundles would work.
///
/// For this reason, there is intentionally no [`Query`] to match whether an entity
/// contains the components of a bundle.
/// Queries should instead only select the components they logically operate on.
///
/// ## Removal
///
/// Bundles are also used when removing components from an entity.
///
/// Removing a bundle from an entity will remove any of its components attached
/// to the entity from the entity.
/// That is, if the entity does not have all the components of the bundle, those
/// which are present will be removed.
///
/// # Implementors
///
/// Every type which implements [`Component`] also implements `Bundle`, since
/// [`Component`] types can be added to or removed from an entity.
///
/// Additionally, [Tuples](`tuple`) of bundles are also [`Bundle`] (with up to 15 bundles).
/// These bundles contain the items of the 'inner' bundles.
/// This is a convenient shorthand which is primarily used when spawning entities.
/// For example, spawning an entity using the bundle `(SpriteBundle {...}, PlayerMarker)`
/// will spawn an entity with components required for a 2d sprite, and the `PlayerMarker` component.
///
/// [`unit`], otherwise known as [`()`](`unit`), is a [`Bundle`] containing no components (since it
/// can also be considered as the empty tuple).
/// This can be useful for spawning large numbers of empty entities using
/// [`World::spawn_batch`](crate::world::World::spawn_batch).
///
/// Tuple bundles can be nested, which can be used to create an anonymous bundle with more than
/// 15 items.
/// However, in most cases where this is required, the derive macro [`derive@Bundle`] should be
/// used instead.
/// The derived `Bundle` implementation contains the items of its fields, which all must
/// implement `Bundle`.
/// As explained above, this includes any [`Component`] type, and other derived bundles.
///
/// If you want to add `PhantomData` to your `Bundle` you have to mark it with `#[bundle(ignore)]`.
/// ```
/// # use std::marker::PhantomData;
/// use bevy_ecs::{component::Component, bundle::Bundle};
///
/// #[derive(Component)]
/// struct XPosition(i32);
/// #[derive(Component)]
/// struct YPosition(i32);
///
/// #[derive(Bundle)]
/// struct PositionBundle {
/// // A bundle can contain components
/// x: XPosition,
/// y: YPosition,
/// }
///
/// // You have to implement `Default` for ignored field types in bundle structs.
/// #[derive(Default)]
/// struct Other(f32);
///
/// #[derive(Bundle)]
/// struct NamedPointBundle<T: Send + Sync + 'static> {
/// // Or other bundles
/// a: PositionBundle,
/// // In addition to more components
/// z: PointName,
///
/// // when you need to use `PhantomData` you have to mark it as ignored
/// #[bundle(ignore)]
/// _phantom_data: PhantomData<T>
/// }
///
/// #[derive(Component)]
/// struct PointName(String);
/// ```
///
/// # Safety
///
/// Manual implementations of this trait are unsupported.
/// That is, there is no safe way to implement this trait, and you must not do so.
/// If you want a type to implement [`Bundle`], you must use [`derive@Bundle`](derive@Bundle).
///
/// [`Query`]: crate::system::Query
// Some safety points:
// - [`Bundle::component_ids`] must return the [`ComponentId`] for each component type in the
// bundle, in the _exact_ order that [`DynamicBundle::get_components`] is called.
// - [`Bundle::from_components`] must call `func` exactly once for each [`ComponentId`] returned by
// [`Bundle::component_ids`].
#[diagnostic::on_unimplemented(
message = "`{Self}` is not a `Bundle`",
label = "invalid `Bundle`",
note = "consider annotating `{Self}` with `#[derive(Component)]` or `#[derive(Bundle)]`"
)]
pub unsafe trait Bundle: DynamicBundle + Send + Sync + 'static {
/// Gets this [`Bundle`]'s component ids, in the order of this bundle's [`Component`]s
#[doc(hidden)]
fn component_ids(
components: &mut Components,
storages: &mut Storages,
ids: &mut impl FnMut(ComponentId),
);
/// Gets this [`Bundle`]'s component ids. This will be [`None`] if the component has not been registered.
fn get_component_ids(components: &Components, ids: &mut impl FnMut(Option<ComponentId>));
/// Calls `func`, which should return data for each component in the bundle, in the order of
/// this bundle's [`Component`]s
///
/// # Safety
/// Caller must return data for each component in the bundle, in the order of this bundle's
/// [`Component`]s
#[doc(hidden)]
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
where
// Ensure that the `OwningPtr` is used correctly
F: for<'a> FnMut(&'a mut T) -> OwningPtr<'a>,
Self: Sized;
/// Registers components that are required by the components in this [`Bundle`].
fn register_required_components(
_components: &mut Components,
_storages: &mut Storages,
_required_components: &mut RequiredComponents,
);
}
/// The parts from [`Bundle`] that don't require statically knowing the components of the bundle.
pub trait DynamicBundle {
// SAFETY:
// The `StorageType` argument passed into [`Bundle::get_components`] must be correct for the
// component being fetched.
//
/// Calls `func` on each value, in the order of this bundle's [`Component`]s. This passes
/// ownership of the component values to `func`.
#[doc(hidden)]
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>));
}
// SAFETY:
// - `Bundle::component_ids` calls `ids` for C's component id (and nothing else)
// - `Bundle::get_components` is called exactly once for C and passes the component's storage type based on its associated constant.
// - `Bundle::from_components` calls `func` exactly once for C, which is the exact value returned by `Bundle::component_ids`.
unsafe impl<C: Component> Bundle for C {
fn component_ids(
components: &mut Components,
storages: &mut Storages,
ids: &mut impl FnMut(ComponentId),
) {
ids(components.register_component::<C>(storages));
}
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
where
// Ensure that the `OwningPtr` is used correctly
F: for<'a> FnMut(&'a mut T) -> OwningPtr<'a>,
Self: Sized,
{
let ptr = func(ctx);
// Safety: The id given in `component_ids` is for `Self`
unsafe { ptr.read() }
}
fn register_required_components(
components: &mut Components,
storages: &mut Storages,
required_components: &mut RequiredComponents,
) {
let component_id = components.register_component::<C>(storages);
<C as Component>::register_required_components(
component_id,
components,
storages,
required_components,
0,
);
}
fn get_component_ids(components: &Components, ids: &mut impl FnMut(Option<ComponentId>)) {
ids(components.get_id(TypeId::of::<C>()));
}
}
impl<C: Component> DynamicBundle for C {
#[inline]
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>)) {
OwningPtr::make(self, |ptr| func(C::STORAGE_TYPE, ptr));
}
}
macro_rules! tuple_impl {
($(#[$meta:meta])* $($name: ident),*) => {
$(#[$meta])*
// SAFETY:
// - `Bundle::component_ids` calls `ids` for each component type in the
// bundle, in the exact order that `DynamicBundle::get_components` is called.
// - `Bundle::from_components` calls `func` exactly once for each `ComponentId` returned by `Bundle::component_ids`.
// - `Bundle::get_components` is called exactly once for each member. Relies on the above implementation to pass the correct
// `StorageType` into the callback.
unsafe impl<$($name: Bundle),*> Bundle for ($($name,)*) {
#[allow(unused_variables)]
fn component_ids(components: &mut Components, storages: &mut Storages, ids: &mut impl FnMut(ComponentId)){
$(<$name as Bundle>::component_ids(components, storages, ids);)*
}
#[allow(unused_variables)]
fn get_component_ids(components: &Components, ids: &mut impl FnMut(Option<ComponentId>)){
$(<$name as Bundle>::get_component_ids(components, ids);)*
}
#[allow(unused_variables, unused_mut)]
#[allow(clippy::unused_unit)]
unsafe fn from_components<T, F>(ctx: &mut T, func: &mut F) -> Self
where
F: FnMut(&mut T) -> OwningPtr<'_>
{
#[allow(unused_unsafe)]
// SAFETY: Rust guarantees that tuple calls are evaluated 'left to right'.
// https://doc.rust-lang.org/reference/expressions.html#evaluation-order-of-operands
unsafe { ($(<$name as Bundle>::from_components(ctx, func),)*) }
}
fn register_required_components(
_components: &mut Components,
_storages: &mut Storages,
_required_components: &mut RequiredComponents,
) {
$(<$name as Bundle>::register_required_components(_components, _storages, _required_components);)*
}
}
impl<$($name: Bundle),*> DynamicBundle for ($($name,)*) {
#[allow(unused_variables, unused_mut)]
#[inline(always)]
fn get_components(self, func: &mut impl FnMut(StorageType, OwningPtr<'_>)) {
#[allow(non_snake_case)]
let ($(mut $name,)*) = self;
$(
$name.get_components(&mut *func);
)*
}
}
}
}
all_tuples!(
#[doc(fake_variadic)]
tuple_impl,
0,
15,
B
);
/// For a specific [`World`], this stores a unique value identifying a type of a registered [`Bundle`].
///
/// [`World`]: crate::world::World
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
pub struct BundleId(usize);
impl BundleId {
/// Returns the index of the associated [`Bundle`] type.
///
/// Note that this is unique per-world, and should not be reused across them.
#[inline]
pub fn index(self) -> usize {
self.0
}
}
impl SparseSetIndex for BundleId {
#[inline]
fn sparse_set_index(&self) -> usize {
self.index()
}
#[inline]
fn get_sparse_set_index(value: usize) -> Self {
Self(value)
}
}
// What to do on insertion if component already exists
#[derive(Clone, Copy, Eq, PartialEq)]
pub(crate) enum InsertMode {
/// Any existing components of a matching type will be overwritten.
Replace,
/// Any existing components of a matching type will kept unchanged.
Keep,
}
/// Stores metadata associated with a specific type of [`Bundle`] for a given [`World`].
///
/// [`World`]: crate::world::World
pub struct BundleInfo {
id: BundleId,
/// The list of all components contributed by the bundle (including Required Components). This is in
/// the order `[EXPLICIT_COMPONENTS][REQUIRED_COMPONENTS]`
///
/// # Safety
/// Every ID in this list must be valid within the World that owns the [`BundleInfo`],
/// must have its storage initialized (i.e. columns created in tables, sparse set created),
/// and the range (0..`explicit_components_len`) must be in the same order as the source bundle
/// type writes its components in.
component_ids: Vec<ComponentId>,
required_components: Vec<RequiredComponentConstructor>,
explicit_components_len: usize,
}
impl BundleInfo {
/// Create a new [`BundleInfo`].
///
/// # Safety
///
/// Every ID in `component_ids` must be valid within the World that owns the `BundleInfo`,
/// must have its storage initialized (i.e. columns created in tables, sparse set created),
/// and must be in the same order as the source bundle type writes its components in.
unsafe fn new(
bundle_type_name: &'static str,
components: &Components,
mut component_ids: Vec<ComponentId>,
id: BundleId,
) -> BundleInfo {
let mut deduped = component_ids.clone();
deduped.sort_unstable();
deduped.dedup();
if deduped.len() != component_ids.len() {
// TODO: Replace with `Vec::partition_dedup` once https://github.com/rust-lang/rust/issues/54279 is stabilized
let mut seen = HashSet::new();
let mut dups = Vec::new();
for id in component_ids {
if !seen.insert(id) {
dups.push(id);
}
}
let names = dups
.into_iter()
.map(|id| {
// SAFETY: the caller ensures component_id is valid.
unsafe { components.get_info_unchecked(id).name() }
})
.collect::<Vec<_>>()
.join(", ");
panic!("Bundle {bundle_type_name} has duplicate components: {names}");
}
let explicit_components_len = component_ids.len();
let mut required_components = RequiredComponents::default();
for component_id in component_ids.iter().copied() {
// SAFETY: caller has verified that all ids are valid
let info = unsafe { components.get_info_unchecked(component_id) };
required_components.merge(info.required_components());
}
required_components.remove_explicit_components(&component_ids);
let required_components = required_components
.0
.into_iter()
.map(|(component_id, v)| {
// This adds required components to the component_ids list _after_ using that list to remove explicitly provided
// components. This ordering is important!
component_ids.push(component_id);
v.constructor
})
.collect();
// SAFETY: The caller ensures that component_ids:
// - is valid for the associated world
// - has had its storage initialized
// - is in the same order as the source bundle type
BundleInfo {
id,
component_ids,
required_components,
explicit_components_len,
}
}
/// Returns a value identifying the associated [`Bundle`] type.
#[inline]
pub const fn id(&self) -> BundleId {
self.id
}
/// Returns the [ID](ComponentId) of each component explicitly defined in this bundle (ex: Required Components are excluded).
///
/// For all components contributed by this bundle (including Required Components), see [`BundleInfo::contributed_components`]
#[inline]
pub fn explicit_components(&self) -> &[ComponentId] {
&self.component_ids[0..self.explicit_components_len]
}
/// Returns the [ID](ComponentId) of each Required Component needed by this bundle. This _does not include_ Required Components that are
/// explicitly provided by the bundle.
#[inline]
pub fn required_components(&self) -> &[ComponentId] {
&self.component_ids[self.explicit_components_len..]
}
/// Returns the [ID](ComponentId) of each component contributed by this bundle. This includes Required Components.
///
/// For only components explicitly defined in this bundle, see [`BundleInfo::explicit_components`]
#[inline]
pub fn contributed_components(&self) -> &[ComponentId] {
&self.component_ids
}
/// Returns an iterator over the [ID](ComponentId) of each component explicitly defined in this bundle (ex: this excludes Required Components).
/// To iterate all components contributed by this bundle (including Required Components), see [`BundleInfo::iter_contributed_components`]
#[inline]
pub fn iter_explicit_components(&self) -> impl Iterator<Item = ComponentId> + '_ {
self.explicit_components().iter().copied()
}
/// Returns an iterator over the [ID](ComponentId) of each component contributed by this bundle. This includes Required Components.
///
/// To iterate only components explicitly defined in this bundle, see [`BundleInfo::iter_explicit_components`]
#[inline]
pub fn iter_contributed_components(&self) -> impl Iterator<Item = ComponentId> + '_ {
self.component_ids.iter().copied()
}
/// Returns an iterator over the [ID](ComponentId) of each Required Component needed by this bundle. This _does not include_ Required Components that are
/// explicitly provided by the bundle.
pub fn iter_required_components(&self) -> impl Iterator<Item = ComponentId> + '_ {
self.required_components().iter().copied()
}
/// This writes components from a given [`Bundle`] to the given entity.
///
/// # Safety
///
/// `bundle_component_status` must return the "correct" [`ComponentStatus`] for each component
/// in the [`Bundle`], with respect to the entity's original archetype (prior to the bundle being added)
/// For example, if the original archetype already has `ComponentA` and `T` also has `ComponentA`, the status
/// should be `Mutated`. If the original archetype does not have `ComponentA`, the status should be `Added`.
/// When "inserting" a bundle into an existing entity, [`AddBundle`]
/// should be used, which will report `Added` vs `Mutated` status based on the current archetype's structure.
/// When spawning a bundle, [`SpawnBundleStatus`] can be used instead, which removes the need
/// to look up the [`AddBundle`] in the archetype graph, which requires
/// ownership of the entity's current archetype.
///
/// `table` must be the "new" table for `entity`. `table_row` must have space allocated for the
/// `entity`, `bundle` must match this [`BundleInfo`]'s type
#[inline]
#[allow(clippy::too_many_arguments)]
unsafe fn write_components<'a, T: DynamicBundle, S: BundleComponentStatus>(
&self,
table: &mut Table,
sparse_sets: &mut SparseSets,
bundle_component_status: &S,
required_components: impl Iterator<Item = &'a RequiredComponentConstructor>,
entity: Entity,
table_row: TableRow,
change_tick: Tick,
bundle: T,
insert_mode: InsertMode,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) {
// NOTE: get_components calls this closure on each component in "bundle order".
// bundle_info.component_ids are also in "bundle order"
let mut bundle_component = 0;
bundle.get_components(&mut |storage_type, component_ptr| {
let component_id = *self.component_ids.get_unchecked(bundle_component);
match storage_type {
StorageType::Table => {
// SAFETY: bundle_component is a valid index for this bundle
let status = unsafe { bundle_component_status.get_status(bundle_component) };
// SAFETY: If component_id is in self.component_ids, BundleInfo::new requires that
// the target table contains the component.
let column = table.get_column_mut(component_id).debug_checked_unwrap();
match (status, insert_mode) {
(ComponentStatus::Added, _) => column.initialize(
table_row,
component_ptr,
change_tick,
#[cfg(feature = "track_change_detection")]
caller,
),
(ComponentStatus::Existing, InsertMode::Replace) => column.replace(
table_row,
component_ptr,
change_tick,
#[cfg(feature = "track_change_detection")]
caller,
),
(ComponentStatus::Existing, InsertMode::Keep) => {
if let Some(drop_fn) = table.get_drop_for(component_id) {
drop_fn(component_ptr);
}
}
}
}
StorageType::SparseSet => {
let sparse_set =
// SAFETY: If component_id is in self.component_ids, BundleInfo::new requires that
// a sparse set exists for the component.
unsafe { sparse_sets.get_mut(component_id).debug_checked_unwrap() };
sparse_set.insert(
entity,
component_ptr,
change_tick,
#[cfg(feature = "track_change_detection")]
caller,
);
}
}
bundle_component += 1;
});
for required_component in required_components {
required_component.initialize(
table,
sparse_sets,
change_tick,
table_row,
entity,
#[cfg(feature = "track_change_detection")]
caller,
);
}
}
/// Internal method to initialize a required component from an [`OwningPtr`]. This should ultimately be called
/// in the context of [`BundleInfo::write_components`], via [`RequiredComponentConstructor::initialize`].
///
/// # Safety
///
/// `component_ptr` must point to a required component value that matches the given `component_id`. The `storage_type` must match
/// the type associated with `component_id`. The `entity` and `table_row` must correspond to an entity with an uninitialized
/// component matching `component_id`.
///
/// This method _should not_ be called outside of [`BundleInfo::write_components`].
/// For more information, read the [`BundleInfo::write_components`] safety docs.
/// This function inherits the safety requirements defined there.
#[allow(clippy::too_many_arguments)]
pub(crate) unsafe fn initialize_required_component(
table: &mut Table,
sparse_sets: &mut SparseSets,
change_tick: Tick,
table_row: TableRow,
entity: Entity,
component_id: ComponentId,
storage_type: StorageType,
component_ptr: OwningPtr,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) {
{
match storage_type {
StorageType::Table => {
let column =
// SAFETY: If component_id is in required_components, BundleInfo::new requires that
// the target table contains the component.
unsafe { table.get_column_mut(component_id).debug_checked_unwrap() };
column.initialize(
table_row,
component_ptr,
change_tick,
#[cfg(feature = "track_change_detection")]
caller,
);
}
StorageType::SparseSet => {
let sparse_set =
// SAFETY: If component_id is in required_components, BundleInfo::new requires that
// a sparse set exists for the component.
unsafe { sparse_sets.get_mut(component_id).debug_checked_unwrap() };
sparse_set.insert(
entity,
component_ptr,
change_tick,
#[cfg(feature = "track_change_detection")]
caller,
);
}
}
}
}
/// Adds a bundle to the given archetype and returns the resulting archetype. This could be the
/// same [`ArchetypeId`], in the event that adding the given bundle does not result in an
/// [`Archetype`] change. Results are cached in the [`Archetype`] graph to avoid redundant work.
/// # Safety
/// `components` must be the same components as passed in [`Self::new`]
pub(crate) unsafe fn add_bundle_to_archetype(
&self,
archetypes: &mut Archetypes,
storages: &mut Storages,
components: &Components,
observers: &Observers,
archetype_id: ArchetypeId,
) -> ArchetypeId {
if let Some(add_bundle_id) = archetypes[archetype_id].edges().get_add_bundle(self.id) {
return add_bundle_id;
}
let mut new_table_components = Vec::new();
let mut new_sparse_set_components = Vec::new();
let mut bundle_status = Vec::with_capacity(self.explicit_components_len);
let mut added_required_components = Vec::new();
let mut added = Vec::new();
let mut existing = Vec::new();
let current_archetype = &mut archetypes[archetype_id];
for component_id in self.iter_explicit_components() {
if current_archetype.contains(component_id) {
bundle_status.push(ComponentStatus::Existing);
existing.push(component_id);
} else {
bundle_status.push(ComponentStatus::Added);
added.push(component_id);
// SAFETY: component_id exists
let component_info = unsafe { components.get_info_unchecked(component_id) };
match component_info.storage_type() {
StorageType::Table => new_table_components.push(component_id),
StorageType::SparseSet => new_sparse_set_components.push(component_id),
}
}
}
for (index, component_id) in self.iter_required_components().enumerate() {
if !current_archetype.contains(component_id) {
added_required_components.push(self.required_components[index].clone());
added.push(component_id);
// SAFETY: component_id exists
let component_info = unsafe { components.get_info_unchecked(component_id) };
match component_info.storage_type() {
StorageType::Table => {
new_table_components.push(component_id);
}
StorageType::SparseSet => {
new_sparse_set_components.push(component_id);
}
}
}
}
if new_table_components.is_empty() && new_sparse_set_components.is_empty() {
let edges = current_archetype.edges_mut();
// the archetype does not change when we add this bundle
edges.insert_add_bundle(
self.id,
archetype_id,
bundle_status,
added_required_components,
added,
existing,
);
archetype_id
} else {
let table_id;
let table_components;
let sparse_set_components;
// the archetype changes when we add this bundle. prepare the new archetype and storages
{
let current_archetype = &archetypes[archetype_id];
table_components = if new_table_components.is_empty() {
// if there are no new table components, we can keep using this table
table_id = current_archetype.table_id();
current_archetype.table_components().collect()
} else {
new_table_components.extend(current_archetype.table_components());
// sort to ignore order while hashing
new_table_components.sort_unstable();
// SAFETY: all component ids in `new_table_components` exist
table_id = unsafe {
storages
.tables
.get_id_or_insert(&new_table_components, components)
};
new_table_components
};
sparse_set_components = if new_sparse_set_components.is_empty() {
current_archetype.sparse_set_components().collect()
} else {
new_sparse_set_components.extend(current_archetype.sparse_set_components());
// sort to ignore order while hashing
new_sparse_set_components.sort_unstable();
new_sparse_set_components
};
};
// SAFETY: ids in self must be valid
let new_archetype_id = archetypes.get_id_or_insert(
components,
observers,
table_id,
table_components,
sparse_set_components,
);
// add an edge from the old archetype to the new archetype
archetypes[archetype_id].edges_mut().insert_add_bundle(
self.id,
new_archetype_id,
bundle_status,
added_required_components,
added,
existing,
);
new_archetype_id
}
}
}
// SAFETY: We have exclusive world access so our pointers can't be invalidated externally
pub(crate) struct BundleInserter<'w> {
world: UnsafeWorldCell<'w>,
bundle_info: ConstNonNull<BundleInfo>,
add_bundle: ConstNonNull<AddBundle>,
table: NonNull<Table>,
archetype: NonNull<Archetype>,
result: InsertBundleResult,
change_tick: Tick,
}
pub(crate) enum InsertBundleResult {
SameArchetype,
NewArchetypeSameTable {
new_archetype: NonNull<Archetype>,
},
NewArchetypeNewTable {
new_archetype: NonNull<Archetype>,
new_table: NonNull<Table>,
},
}
impl<'w> BundleInserter<'w> {
#[inline]
pub(crate) fn new<T: Bundle>(
world: &'w mut World,
archetype_id: ArchetypeId,
change_tick: Tick,
) -> Self {
let bundle_id = world
.bundles
.register_info::<T>(&mut world.components, &mut world.storages);
// SAFETY: We just ensured this bundle exists
unsafe { Self::new_with_id(world, archetype_id, bundle_id, change_tick) }
}
/// Creates a new [`BundleInserter`].
///
/// # Safety
/// - Caller must ensure that `bundle_id` exists in `world.bundles`.
#[inline]
pub(crate) unsafe fn new_with_id(
world: &'w mut World,
archetype_id: ArchetypeId,
bundle_id: BundleId,
change_tick: Tick,
) -> Self {
// SAFETY: We will not make any accesses to the command queue, component or resource data of this world
let bundle_info = world.bundles.get_unchecked(bundle_id);
let bundle_id = bundle_info.id();
let new_archetype_id = bundle_info.add_bundle_to_archetype(
&mut world.archetypes,
&mut world.storages,
&world.components,
&world.observers,
archetype_id,
);
if new_archetype_id == archetype_id {
let archetype = &mut world.archetypes[archetype_id];
// SAFETY: The edge is assured to be initialized when we called add_bundle_to_archetype
let add_bundle = unsafe {
archetype
.edges()
.get_add_bundle_internal(bundle_id)
.debug_checked_unwrap()
};
let table_id = archetype.table_id();
let table = &mut world.storages.tables[table_id];
Self {
add_bundle: add_bundle.into(),
archetype: archetype.into(),
bundle_info: bundle_info.into(),
table: table.into(),
result: InsertBundleResult::SameArchetype,
change_tick,
world: world.as_unsafe_world_cell(),
}
} else {
let (archetype, new_archetype) =
world.archetypes.get_2_mut(archetype_id, new_archetype_id);
// SAFETY: The edge is assured to be initialized when we called add_bundle_to_archetype
let add_bundle = unsafe {
archetype
.edges()
.get_add_bundle_internal(bundle_id)
.debug_checked_unwrap()
};
let table_id = archetype.table_id();
let new_table_id = new_archetype.table_id();
if table_id == new_table_id {
let table = &mut world.storages.tables[table_id];
Self {
add_bundle: add_bundle.into(),
archetype: archetype.into(),
bundle_info: bundle_info.into(),
table: table.into(),
result: InsertBundleResult::NewArchetypeSameTable {
new_archetype: new_archetype.into(),
},
change_tick,
world: world.as_unsafe_world_cell(),
}
} else {
let (table, new_table) = world.storages.tables.get_2_mut(table_id, new_table_id);
Self {
add_bundle: add_bundle.into(),
archetype: archetype.into(),
bundle_info: bundle_info.into(),
table: table.into(),
result: InsertBundleResult::NewArchetypeNewTable {
new_archetype: new_archetype.into(),
new_table: new_table.into(),
},
change_tick,
world: world.as_unsafe_world_cell(),
}
}
}
}
/// # Safety
/// `entity` must currently exist in the source archetype for this inserter. `location`
/// must be `entity`'s location in the archetype. `T` must match this [`BundleInfo`]'s type
#[inline]
pub(crate) unsafe fn insert<T: DynamicBundle>(
&mut self,
entity: Entity,
location: EntityLocation,
bundle: T,
insert_mode: InsertMode,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) -> EntityLocation {
let bundle_info = self.bundle_info.as_ref();
let add_bundle = self.add_bundle.as_ref();
let table = self.table.as_mut();
let archetype = self.archetype.as_ref();
// SAFETY: All components in the bundle are guaranteed to exist in the World
// as they must be initialized before creating the BundleInfo.
unsafe {
// SAFETY: Mutable references do not alias and will be dropped after this block
let mut deferred_world = self.world.into_deferred();
if insert_mode == InsertMode::Replace {
deferred_world.trigger_on_replace(archetype, entity, add_bundle.iter_existing());
if archetype.has_replace_observer() {
deferred_world.trigger_observers(
ON_REPLACE,
entity,
add_bundle.iter_existing(),
);
}
}
}
// SAFETY: Archetype gets borrowed when running the on_replace observers above,
// so this reference can only be promoted from shared to &mut down here, after they have been ran
let archetype = self.archetype.as_mut();
let (new_archetype, new_location) = match &mut self.result {
InsertBundleResult::SameArchetype => {
// SAFETY: Mutable references do not alias and will be dropped after this block
let sparse_sets = {
let world = self.world.world_mut();
&mut world.storages.sparse_sets
};
bundle_info.write_components(
table,
sparse_sets,
add_bundle,
add_bundle.required_components.iter(),
entity,
location.table_row,
self.change_tick,
bundle,
insert_mode,
#[cfg(feature = "track_change_detection")]
caller,
);
(archetype, location)
}
InsertBundleResult::NewArchetypeSameTable { new_archetype } => {
let new_archetype = new_archetype.as_mut();
// SAFETY: Mutable references do not alias and will be dropped after this block
let (sparse_sets, entities) = {
let world = self.world.world_mut();
(&mut world.storages.sparse_sets, &mut world.entities)
};
let result = archetype.swap_remove(location.archetype_row);
if let Some(swapped_entity) = result.swapped_entity {
let swapped_location =
// SAFETY: If the swap was successful, swapped_entity must be valid.
unsafe { entities.get(swapped_entity).debug_checked_unwrap() };
entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: location.archetype_row,
table_id: swapped_location.table_id,
table_row: swapped_location.table_row,
},
);
}
let new_location = new_archetype.allocate(entity, result.table_row);
entities.set(entity.index(), new_location);
bundle_info.write_components(
table,
sparse_sets,
add_bundle,
add_bundle.required_components.iter(),
entity,
result.table_row,
self.change_tick,
bundle,
insert_mode,
#[cfg(feature = "track_change_detection")]
caller,
);
(new_archetype, new_location)
}
InsertBundleResult::NewArchetypeNewTable {
new_archetype,
new_table,
} => {
let new_table = new_table.as_mut();
let new_archetype = new_archetype.as_mut();
// SAFETY: Mutable references do not alias and will be dropped after this block
let (archetypes_ptr, sparse_sets, entities) = {
let world = self.world.world_mut();
let archetype_ptr: *mut Archetype = world.archetypes.archetypes.as_mut_ptr();
(
archetype_ptr,
&mut world.storages.sparse_sets,
&mut world.entities,
)
};
let result = archetype.swap_remove(location.archetype_row);
if let Some(swapped_entity) = result.swapped_entity {
let swapped_location =
// SAFETY: If the swap was successful, swapped_entity must be valid.
unsafe { entities.get(swapped_entity).debug_checked_unwrap() };
entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: location.archetype_row,
table_id: swapped_location.table_id,
table_row: swapped_location.table_row,
},
);
}
// PERF: store "non bundle" components in edge, then just move those to avoid
// redundant copies
let move_result = table.move_to_superset_unchecked(result.table_row, new_table);
let new_location = new_archetype.allocate(entity, move_result.new_row);
entities.set(entity.index(), new_location);
// if an entity was moved into this entity's table spot, update its table row
if let Some(swapped_entity) = move_result.swapped_entity {
let swapped_location =
// SAFETY: If the swap was successful, swapped_entity must be valid.
unsafe { entities.get(swapped_entity).debug_checked_unwrap() };
entities.set(
swapped_entity.index(),
EntityLocation {
archetype_id: swapped_location.archetype_id,
archetype_row: swapped_location.archetype_row,
table_id: swapped_location.table_id,
table_row: result.table_row,
},
);
if archetype.id() == swapped_location.archetype_id {
archetype
.set_entity_table_row(swapped_location.archetype_row, result.table_row);
} else if new_archetype.id() == swapped_location.archetype_id {
new_archetype
.set_entity_table_row(swapped_location.archetype_row, result.table_row);
} else {
// SAFETY: the only two borrowed archetypes are above and we just did collision checks
(*archetypes_ptr.add(swapped_location.archetype_id.index()))
.set_entity_table_row(swapped_location.archetype_row, result.table_row);
}
}
bundle_info.write_components(
new_table,
sparse_sets,
add_bundle,
add_bundle.required_components.iter(),
entity,
move_result.new_row,
self.change_tick,
bundle,
insert_mode,
#[cfg(feature = "track_change_detection")]
caller,
);
(new_archetype, new_location)
}
};
let new_archetype = &*new_archetype;
// SAFETY: We have no outstanding mutable references to world as they were dropped
let mut deferred_world = unsafe { self.world.into_deferred() };
// SAFETY: All components in the bundle are guaranteed to exist in the World
// as they must be initialized before creating the BundleInfo.
unsafe {
deferred_world.trigger_on_add(new_archetype, entity, add_bundle.iter_added());
if new_archetype.has_add_observer() {
deferred_world.trigger_observers(ON_ADD, entity, add_bundle.iter_added());
}
match insert_mode {
InsertMode::Replace => {
// insert triggers for both new and existing components if we're replacing them
deferred_world.trigger_on_insert(
new_archetype,
entity,
add_bundle.iter_inserted(),
);
if new_archetype.has_insert_observer() {
deferred_world.trigger_observers(
ON_INSERT,
entity,
add_bundle.iter_inserted(),
);
}
}
InsertMode::Keep => {
// insert triggers only for new components if we're not replacing them (since
// nothing is actually inserted).
deferred_world.trigger_on_insert(
new_archetype,
entity,
add_bundle.iter_added(),
);
if new_archetype.has_insert_observer() {
deferred_world.trigger_observers(
ON_INSERT,
entity,
add_bundle.iter_added(),
);
}
}
}
}
new_location
}
#[inline]
pub(crate) fn entities(&mut self) -> &mut Entities {
// SAFETY: No outstanding references to self.world, changes to entities cannot invalidate our internal pointers
unsafe { &mut self.world.world_mut().entities }
}
}
// SAFETY: We have exclusive world access so our pointers can't be invalidated externally
pub(crate) struct BundleSpawner<'w> {
world: UnsafeWorldCell<'w>,
bundle_info: ConstNonNull<BundleInfo>,
table: NonNull<Table>,
archetype: NonNull<Archetype>,
change_tick: Tick,
}
impl<'w> BundleSpawner<'w> {
#[inline]
pub fn new<T: Bundle>(world: &'w mut World, change_tick: Tick) -> Self {
let bundle_id = world
.bundles
.register_info::<T>(&mut world.components, &mut world.storages);
// SAFETY: we initialized this bundle_id in `init_info`
unsafe { Self::new_with_id(world, bundle_id, change_tick) }
}
/// Creates a new [`BundleSpawner`].
///
/// # Safety
/// Caller must ensure that `bundle_id` exists in `world.bundles`
#[inline]
pub(crate) unsafe fn new_with_id(
world: &'w mut World,
bundle_id: BundleId,
change_tick: Tick,
) -> Self {
let bundle_info = world.bundles.get_unchecked(bundle_id);
let new_archetype_id = bundle_info.add_bundle_to_archetype(
&mut world.archetypes,
&mut world.storages,
&world.components,
&world.observers,
ArchetypeId::EMPTY,
);
let archetype = &mut world.archetypes[new_archetype_id];
let table = &mut world.storages.tables[archetype.table_id()];
Self {
bundle_info: bundle_info.into(),
table: table.into(),
archetype: archetype.into(),
change_tick,
world: world.as_unsafe_world_cell(),
}
}
#[inline]
pub fn reserve_storage(&mut self, additional: usize) {
// SAFETY: There are no outstanding world references
let (archetype, table) = unsafe { (self.archetype.as_mut(), self.table.as_mut()) };
archetype.reserve(additional);
table.reserve(additional);
}
/// # Safety
/// `entity` must be allocated (but non-existent), `T` must match this [`BundleInfo`]'s type
#[inline]
pub unsafe fn spawn_non_existent<T: DynamicBundle>(
&mut self,
entity: Entity,
bundle: T,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) -> EntityLocation {
// SAFETY: We do not make any structural changes to the archetype graph through self.world so these pointers always remain valid
let bundle_info = self.bundle_info.as_ref();
let location = {
let table = self.table.as_mut();
let archetype = self.archetype.as_mut();
// SAFETY: Mutable references do not alias and will be dropped after this block
let (sparse_sets, entities) = {
let world = self.world.world_mut();
(&mut world.storages.sparse_sets, &mut world.entities)
};
let table_row = table.allocate(entity);
let location = archetype.allocate(entity, table_row);
bundle_info.write_components(
table,
sparse_sets,
&SpawnBundleStatus,
bundle_info.required_components.iter(),
entity,
table_row,
self.change_tick,
bundle,
InsertMode::Replace,
#[cfg(feature = "track_change_detection")]
caller,
);
entities.set(entity.index(), location);
location
};
// SAFETY: We have no outstanding mutable references to world as they were dropped
let mut deferred_world = unsafe { self.world.into_deferred() };
// SAFETY: `DeferredWorld` cannot provide mutable access to `Archetypes`.
let archetype = self.archetype.as_ref();
// SAFETY: All components in the bundle are guaranteed to exist in the World
// as they must be initialized before creating the BundleInfo.
unsafe {
deferred_world.trigger_on_add(
archetype,
entity,
bundle_info.iter_contributed_components(),
);
if archetype.has_add_observer() {
deferred_world.trigger_observers(
ON_ADD,
entity,
bundle_info.iter_contributed_components(),
);
}
deferred_world.trigger_on_insert(
archetype,
entity,
bundle_info.iter_contributed_components(),
);
if archetype.has_insert_observer() {
deferred_world.trigger_observers(
ON_INSERT,
entity,
bundle_info.iter_contributed_components(),
);
}
};
location
}
/// # Safety
/// `T` must match this [`BundleInfo`]'s type
#[inline]
pub unsafe fn spawn<T: Bundle>(
&mut self,
bundle: T,
#[cfg(feature = "track_change_detection")] caller: &'static Location<'static>,
) -> Entity {
let entity = self.entities().alloc();
// SAFETY: entity is allocated (but non-existent), `T` matches this BundleInfo's type
unsafe {
self.spawn_non_existent(
entity,
bundle,
#[cfg(feature = "track_change_detection")]
caller,
);
}
entity
}
#[inline]
pub(crate) fn entities(&mut self) -> &mut Entities {
// SAFETY: No outstanding references to self.world, changes to entities cannot invalidate our internal pointers
unsafe { &mut self.world.world_mut().entities }
}
/// # Safety
/// - `Self` must be dropped after running this function as it may invalidate internal pointers.
#[inline]
pub(crate) unsafe fn flush_commands(&mut self) {
// SAFETY: pointers on self can be invalidated,
self.world.world_mut().flush();
}
}
/// Metadata for bundles. Stores a [`BundleInfo`] for each type of [`Bundle`] in a given world.
#[derive(Default)]
pub struct Bundles {
bundle_infos: Vec<BundleInfo>,
/// Cache static [`BundleId`]
bundle_ids: TypeIdMap<BundleId>,
/// Cache dynamic [`BundleId`] with multiple components
dynamic_bundle_ids: HashMap<Box<[ComponentId]>, BundleId>,
dynamic_bundle_storages: HashMap<BundleId, Vec<StorageType>>,
/// Cache optimized dynamic [`BundleId`] with single component
dynamic_component_bundle_ids: HashMap<ComponentId, BundleId>,
dynamic_component_storages: HashMap<BundleId, StorageType>,
}
impl Bundles {
/// Gets the metadata associated with a specific type of bundle.
/// Returns `None` if the bundle is not registered with the world.
#[inline]
pub fn get(&self, bundle_id: BundleId) -> Option<&BundleInfo> {
self.bundle_infos.get(bundle_id.index())
}
/// Gets the value identifying a specific type of bundle.
/// Returns `None` if the bundle does not exist in the world,
/// or if `type_id` does not correspond to a type of bundle.
#[inline]
pub fn get_id(&self, type_id: TypeId) -> Option<BundleId> {
self.bundle_ids.get(&type_id).cloned()
}
/// Registers a new [`BundleInfo`] for a statically known type.
///
/// Also registers all the components in the bundle.
pub(crate) fn register_info<T: Bundle>(
&mut self,
components: &mut Components,
storages: &mut Storages,
) -> BundleId {
let bundle_infos = &mut self.bundle_infos;
let id = *self.bundle_ids.entry(TypeId::of::<T>()).or_insert_with(|| {
let mut component_ids= Vec::new();
T::component_ids(components, storages, &mut |id| component_ids.push(id));
let id = BundleId(bundle_infos.len());
let bundle_info =
// SAFETY: T::component_id ensures:
// - its info was created
// - appropriate storage for it has been initialized.
// - it was created in the same order as the components in T
unsafe { BundleInfo::new(core::any::type_name::<T>(), components, component_ids, id) };
bundle_infos.push(bundle_info);
id
});
id
}
/// # Safety
/// A [`BundleInfo`] with the given [`BundleId`] must have been initialized for this instance of `Bundles`.
pub(crate) unsafe fn get_unchecked(&self, id: BundleId) -> &BundleInfo {
self.bundle_infos.get_unchecked(id.0)
}
/// # Safety
/// This [`BundleId`] must have been initialized with a single [`Component`] (via [`init_component_info`](Self::init_dynamic_info))
pub(crate) unsafe fn get_storage_unchecked(&self, id: BundleId) -> StorageType {
*self
.dynamic_component_storages
.get(&id)
.debug_checked_unwrap()
}
/// # Safety
/// This [`BundleId`] must have been initialized with multiple [`Component`]s (via [`init_dynamic_info`](Self::init_dynamic_info))
pub(crate) unsafe fn get_storages_unchecked(&mut self, id: BundleId) -> &mut Vec<StorageType> {
self.dynamic_bundle_storages
.get_mut(&id)
.debug_checked_unwrap()
}
/// Initializes a new [`BundleInfo`] for a dynamic [`Bundle`].
///
/// # Panics
///
/// Panics if any of the provided [`ComponentId`]s do not exist in the
/// provided [`Components`].
pub(crate) fn init_dynamic_info(
&mut self,
components: &Components,
component_ids: &[ComponentId],
) -> BundleId {
let bundle_infos = &mut self.bundle_infos;
// Use `raw_entry_mut` to avoid cloning `component_ids` to access `Entry`
let (_, bundle_id) = self
.dynamic_bundle_ids
.raw_entry_mut()
.from_key(component_ids)
.or_insert_with(|| {
let (id, storages) =
initialize_dynamic_bundle(bundle_infos, components, Vec::from(component_ids));
self.dynamic_bundle_storages
.insert_unique_unchecked(id, storages);
(component_ids.into(), id)
});
*bundle_id
}
/// Initializes a new [`BundleInfo`] for a dynamic [`Bundle`] with single component.
///
/// # Panics
///
/// Panics if the provided [`ComponentId`] does not exist in the provided [`Components`].
pub(crate) fn init_component_info(
&mut self,
components: &Components,
component_id: ComponentId,
) -> BundleId {
let bundle_infos = &mut self.bundle_infos;
let bundle_id = self
.dynamic_component_bundle_ids
.entry(component_id)
.or_insert_with(|| {
let (id, storage_type) =
initialize_dynamic_bundle(bundle_infos, components, vec![component_id]);
self.dynamic_component_storages.insert(id, storage_type[0]);
id
});
*bundle_id
}
}
/// Asserts that all components are part of [`Components`]
/// and initializes a [`BundleInfo`].
fn initialize_dynamic_bundle(
bundle_infos: &mut Vec<BundleInfo>,
components: &Components,
component_ids: Vec<ComponentId>,
) -> (BundleId, Vec<StorageType>) {
// Assert component existence
let storage_types = component_ids.iter().map(|&id| {
components.get_info(id).unwrap_or_else(|| {
panic!(
"init_dynamic_info called with component id {id:?} which doesn't exist in this world"
)
}).storage_type()
}).collect();
let id = BundleId(bundle_infos.len());
let bundle_info =
// SAFETY: `component_ids` are valid as they were just checked
unsafe { BundleInfo::new("<dynamic bundle>", components, component_ids, id) };
bundle_infos.push(bundle_info);
(id, storage_types)
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use crate::{component::ComponentId, prelude::*, world::DeferredWorld};
#[derive(Component)]
struct A;
#[derive(Component)]
#[component(on_add = a_on_add, on_insert = a_on_insert, on_replace = a_on_replace, on_remove = a_on_remove)]
struct AMacroHooks;
fn a_on_add(mut world: DeferredWorld, _: Entity, _: ComponentId) {
world.resource_mut::<R>().assert_order(0);
}
fn a_on_insert<T1, T2>(mut world: DeferredWorld, _: T1, _: T2) {
world.resource_mut::<R>().assert_order(1);
}
fn a_on_replace<T1, T2>(mut world: DeferredWorld, _: T1, _: T2) {
world.resource_mut::<R>().assert_order(2);
}
fn a_on_remove<T1, T2>(mut world: DeferredWorld, _: T1, _: T2) {
world.resource_mut::<R>().assert_order(3);
}
#[derive(Component)]
struct B;
#[derive(Component)]
struct C;
#[derive(Component)]
struct D;
#[derive(Component, Eq, PartialEq, Debug)]
struct V(&'static str); // component with a value
#[derive(Resource, Default)]
struct R(usize);
impl R {
#[track_caller]
fn assert_order(&mut self, count: usize) {
assert_eq!(count, self.0);
self.0 += 1;
}
}
#[test]
fn component_hook_order_spawn_despawn() {
let mut world = World::new();
world.init_resource::<R>();
world
.register_component_hooks::<A>()
.on_add(|mut world, _, _| world.resource_mut::<R>().assert_order(0))
.on_insert(|mut world, _, _| world.resource_mut::<R>().assert_order(1))
.on_replace(|mut world, _, _| world.resource_mut::<R>().assert_order(2))
.on_remove(|mut world, _, _| world.resource_mut::<R>().assert_order(3));
let entity = world.spawn(A).id();
world.despawn(entity);
assert_eq!(4, world.resource::<R>().0);
}
#[test]
fn component_hook_order_spawn_despawn_with_macro_hooks() {
let mut world = World::new();
world.init_resource::<R>();
let entity = world.spawn(AMacroHooks).id();
world.despawn(entity);
assert_eq!(4, world.resource::<R>().0);
}
#[test]
fn component_hook_order_insert_remove() {
let mut world = World::new();
world.init_resource::<R>();
world
.register_component_hooks::<A>()
.on_add(|mut world, _, _| world.resource_mut::<R>().assert_order(0))
.on_insert(|mut world, _, _| world.resource_mut::<R>().assert_order(1))
.on_replace(|mut world, _, _| world.resource_mut::<R>().assert_order(2))
.on_remove(|mut world, _, _| world.resource_mut::<R>().assert_order(3));
let mut entity = world.spawn_empty();
entity.insert(A);
entity.remove::<A>();
entity.flush();
assert_eq!(4, world.resource::<R>().0);
}
#[test]
fn component_hook_order_replace() {
let mut world = World::new();
world
.register_component_hooks::<A>()
.on_replace(|mut world, _, _| world.resource_mut::<R>().assert_order(0))
.on_insert(|mut world, _, _| {
if let Some(mut r) = world.get_resource_mut::<R>() {
r.assert_order(1);
}
});
let entity = world.spawn(A).id();
world.init_resource::<R>();
let mut entity = world.entity_mut(entity);
entity.insert(A);
entity.insert_if_new(A); // this will not trigger on_replace or on_insert
entity.flush();
assert_eq!(2, world.resource::<R>().0);
}
#[test]
fn component_hook_order_recursive() {
let mut world = World::new();
world.init_resource::<R>();
world
.register_component_hooks::<A>()
.on_add(|mut world, entity, _| {
world.resource_mut::<R>().assert_order(0);
world.commands().entity(entity).insert(B);
})
.on_remove(|mut world, entity, _| {
world.resource_mut::<R>().assert_order(2);
world.commands().entity(entity).remove::<B>();
});
world
.register_component_hooks::<B>()
.on_add(|mut world, entity, _| {
world.resource_mut::<R>().assert_order(1);
world.commands().entity(entity).remove::<A>();
})
.on_remove(|mut world, _, _| {
world.resource_mut::<R>().assert_order(3);
});
let entity = world.spawn(A).flush();
let entity = world.get_entity(entity).unwrap();
assert!(!entity.contains::<A>());
assert!(!entity.contains::<B>());
assert_eq!(4, world.resource::<R>().0);
}
#[test]
fn component_hook_order_recursive_multiple() {
let mut world = World::new();
world.init_resource::<R>();
world
.register_component_hooks::<A>()
.on_add(|mut world, entity, _| {
world.resource_mut::<R>().assert_order(0);
world.commands().entity(entity).insert(B).insert(C);
});
world
.register_component_hooks::<B>()
.on_add(|mut world, entity, _| {
world.resource_mut::<R>().assert_order(1);
world.commands().entity(entity).insert(D);
});
world
.register_component_hooks::<C>()
.on_add(|mut world, _, _| {
world.resource_mut::<R>().assert_order(3);
});
world
.register_component_hooks::<D>()
.on_add(|mut world, _, _| {
world.resource_mut::<R>().assert_order(2);
});
world.spawn(A).flush();
assert_eq!(4, world.resource::<R>().0);
}
#[test]
fn insert_if_new() {
let mut world = World::new();
let id = world.spawn(V("one")).id();
let mut entity = world.entity_mut(id);
entity.insert_if_new(V("two"));
entity.insert_if_new((A, V("three")));
entity.flush();
// should still contain "one"
let entity = world.entity(id);
assert!(entity.contains::<A>());
assert_eq!(entity.get(), Some(&V("one")));
}
}