mirror of
https://github.com/bevyengine/bevy
synced 2024-11-23 05:03:47 +00:00
06d9384447
Dynamic types (`DynamicStruct`, `DynamicTupleStruct`, `DynamicTuple`, `DynamicList` and `DynamicMap`) are used when deserializing scenes, but currently they can only be applied to existing concrete types. This leads to issues when trying to spawn non trivial deserialized scene. For components, the issue is avoided by requiring that reflected components implement ~~`FromResources`~~ `FromWorld` (or `Default`). When spawning, a new concrete type is created that way, and the dynamic type is applied to it. Unfortunately, some components don't have any valid implementation of these traits. In addition, any `Vec` or `HashMap` inside a component will panic when a dynamic type is pushed into it (for instance, `Text` panics when adding a text section). To solve this issue, this PR adds the `FromReflect` trait that creates a concrete type from a dynamic type that represent it, derives the trait alongside the `Reflect` trait, drops the ~~`FromResources`~~ `FromWorld` requirement on reflected components, ~~and enables reflection for UI and Text bundles~~. It also adds the requirement that fields ignored with `#[reflect(ignore)]` implement `Default`, since we need to initialize them somehow. Co-authored-by: Carter Anderson <mcanders1@gmail.com> |
||
---|---|---|
.. | ||
bevy_reflect_derive | ||
src | ||
Cargo.toml | ||
README.md |
Bevy Reflect
This crate enables you to dynamically interact with Rust types:
- Derive the Reflect traits
- Interact with fields using their names (for named structs) or indices (for tuple structs)
- "Patch" your types with new values
- Look up nested fields using "path strings"
- Iterate over struct fields
- Automatically serialize and deserialize via Serde (without explicit serde impls)
- Trait "reflection"
Features
Derive the Reflect traits
// this will automatically implement the Reflect trait and the Struct trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
a: u32,
b: Bar,
c: Vec<i32>,
d: Vec<Bar>,
}
// this will automatically implement the Reflect trait and the TupleStruct trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);
#[derive(Reflect)]
struct Baz {
value: f32,
}
// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
a: 1,
b: Bar("hello".to_string()),
c: vec![1, 2],
d: vec![Baz { value: 3.14 }],
};
Interact with fields using their names
assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
*foo.get_field_mut::<u32>("a").unwrap() = 2;
assert_eq!(foo.a, 2);
"Patch" your types with new values
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);
foo.apply(&dynamic_struct);
assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);
Look up nested fields using "path strings"
let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);
Iterate over struct fields
for (i, value: &Reflect) in foo.iter_fields().enumerate() {
let field_name = foo.name_at(i).unwrap();
if let Ok(value) = value.downcast_ref::<u32>() {
println!("{} is a u32 with the value: {}", field_name, *value);
}
}
Automatically serialize and deserialize via Serde (without explicit serde impls)
let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();
let serializer = ReflectSerializer::new(&foo, ®istry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(®istry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();
assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
Trait "reflection"
Call a trait on a given &dyn Reflect reference without knowing the underlying type!
#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
value: String,
}
impl DoThing for MyType {
fn do_thing(&self) -> String {
format!("{} World!", self.value)
}
}
#[reflect_trait]
pub trait DoThing {
fn do_thing(&self) -> String;
}
// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
value: "Hello".to_string(),
});
// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?
// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default()
type_registry.register::<MyType>();
// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
.get_type_data::<ReflectDoThing>(reflect_value.type_id())
.unwrap();
// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());
// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn MyType, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn MyType
Why make this?
The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
- Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
- Sometimes the dynamic way is easier
- Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)