bevy/crates/bevy_render/src/render_graph/node.rs
Zachary Harrold a6adced9ed
Deny derive_more error feature and replace it with thiserror (#16684)
# Objective

- Remove `derive_more`'s error derivation and replace it with
`thiserror`

## Solution

- Added `derive_more`'s `error` feature to `deny.toml` to prevent it
sneaking back in.
- Reverted to `thiserror` error derivation

## Notes

Merge conflicts were too numerous to revert the individual changes, so
this reversion was done manually. Please scrutinise carefully during
review.
2024-12-06 17:03:55 +00:00

417 lines
13 KiB
Rust

use crate::{
render_graph::{
Edge, InputSlotError, OutputSlotError, RenderGraphContext, RenderGraphError,
RunSubGraphError, SlotInfo, SlotInfos,
},
render_phase::DrawError,
renderer::RenderContext,
};
pub use bevy_ecs::label::DynEq;
use bevy_ecs::{
define_label,
intern::Interned,
query::{QueryItem, QueryState, ReadOnlyQueryData},
world::{FromWorld, World},
};
use core::fmt::Debug;
use downcast_rs::{impl_downcast, Downcast};
use thiserror::Error;
use variadics_please::all_tuples_with_size;
pub use bevy_render_macros::RenderLabel;
use super::{InternedRenderSubGraph, RenderSubGraph};
define_label!(
/// A strongly-typed class of labels used to identify a [`Node`] in a render graph.
RenderLabel,
RENDER_LABEL_INTERNER
);
/// A shorthand for `Interned<dyn RenderLabel>`.
pub type InternedRenderLabel = Interned<dyn RenderLabel>;
pub trait IntoRenderNodeArray<const N: usize> {
fn into_array(self) -> [InternedRenderLabel; N];
}
macro_rules! impl_render_label_tuples {
($N: expr, $(#[$meta:meta])* $(($T: ident, $I: ident)),*) => {
$(#[$meta])*
impl<$($T: RenderLabel),*> IntoRenderNodeArray<$N> for ($($T,)*) {
#[inline]
fn into_array(self) -> [InternedRenderLabel; $N] {
let ($($I,)*) = self;
[$($I.intern(), )*]
}
}
}
}
all_tuples_with_size!(
#[doc(fake_variadic)]
impl_render_label_tuples,
1,
32,
T,
l
);
/// A render node that can be added to a [`RenderGraph`](super::RenderGraph).
///
/// Nodes are the fundamental part of the graph and used to extend its functionality, by
/// generating draw calls and/or running subgraphs.
/// They are added via the `render_graph::add_node(my_node)` method.
///
/// To determine their position in the graph and ensure that all required dependencies (inputs)
/// are already executed, [`Edges`](Edge) are used.
///
/// A node can produce outputs used as dependencies by other nodes.
/// Those inputs and outputs are called slots and are the default way of passing render data
/// inside the graph. For more information see [`SlotType`](super::SlotType).
pub trait Node: Downcast + Send + Sync + 'static {
/// Specifies the required input slots for this node.
/// They will then be available during the run method inside the [`RenderGraphContext`].
fn input(&self) -> Vec<SlotInfo> {
Vec::new()
}
/// Specifies the produced output slots for this node.
/// They can then be passed one inside [`RenderGraphContext`] during the run method.
fn output(&self) -> Vec<SlotInfo> {
Vec::new()
}
/// Updates internal node state using the current render [`World`] prior to the run method.
fn update(&mut self, _world: &mut World) {}
/// Runs the graph node logic, issues draw calls, updates the output slots and
/// optionally queues up subgraphs for execution. The graph data, input and output values are
/// passed via the [`RenderGraphContext`].
fn run<'w>(
&self,
graph: &mut RenderGraphContext,
render_context: &mut RenderContext<'w>,
world: &'w World,
) -> Result<(), NodeRunError>;
}
impl_downcast!(Node);
#[derive(Error, Debug, Eq, PartialEq)]
pub enum NodeRunError {
#[error("encountered an input slot error")]
InputSlotError(#[from] InputSlotError),
#[error("encountered an output slot error")]
OutputSlotError(#[from] OutputSlotError),
#[error("encountered an error when running a sub-graph")]
RunSubGraphError(#[from] RunSubGraphError),
#[error("encountered an error when executing draw command")]
DrawError(#[from] DrawError),
}
/// A collection of input and output [`Edges`](Edge) for a [`Node`].
#[derive(Debug)]
pub struct Edges {
label: InternedRenderLabel,
input_edges: Vec<Edge>,
output_edges: Vec<Edge>,
}
impl Edges {
/// Returns all "input edges" (edges going "in") for this node .
#[inline]
pub fn input_edges(&self) -> &[Edge] {
&self.input_edges
}
/// Returns all "output edges" (edges going "out") for this node .
#[inline]
pub fn output_edges(&self) -> &[Edge] {
&self.output_edges
}
/// Returns this node's label.
#[inline]
pub fn label(&self) -> InternedRenderLabel {
self.label
}
/// Adds an edge to the `input_edges` if it does not already exist.
pub(crate) fn add_input_edge(&mut self, edge: Edge) -> Result<(), RenderGraphError> {
if self.has_input_edge(&edge) {
return Err(RenderGraphError::EdgeAlreadyExists(edge));
}
self.input_edges.push(edge);
Ok(())
}
/// Removes an edge from the `input_edges` if it exists.
pub(crate) fn remove_input_edge(&mut self, edge: Edge) -> Result<(), RenderGraphError> {
if let Some(index) = self.input_edges.iter().position(|e| *e == edge) {
self.input_edges.swap_remove(index);
Ok(())
} else {
Err(RenderGraphError::EdgeDoesNotExist(edge))
}
}
/// Adds an edge to the `output_edges` if it does not already exist.
pub(crate) fn add_output_edge(&mut self, edge: Edge) -> Result<(), RenderGraphError> {
if self.has_output_edge(&edge) {
return Err(RenderGraphError::EdgeAlreadyExists(edge));
}
self.output_edges.push(edge);
Ok(())
}
/// Removes an edge from the `output_edges` if it exists.
pub(crate) fn remove_output_edge(&mut self, edge: Edge) -> Result<(), RenderGraphError> {
if let Some(index) = self.output_edges.iter().position(|e| *e == edge) {
self.output_edges.swap_remove(index);
Ok(())
} else {
Err(RenderGraphError::EdgeDoesNotExist(edge))
}
}
/// Checks whether the input edge already exists.
pub fn has_input_edge(&self, edge: &Edge) -> bool {
self.input_edges.contains(edge)
}
/// Checks whether the output edge already exists.
pub fn has_output_edge(&self, edge: &Edge) -> bool {
self.output_edges.contains(edge)
}
/// Searches the `input_edges` for a [`Edge::SlotEdge`],
/// which `input_index` matches the `index`;
pub fn get_input_slot_edge(&self, index: usize) -> Result<&Edge, RenderGraphError> {
self.input_edges
.iter()
.find(|e| {
if let Edge::SlotEdge { input_index, .. } = e {
*input_index == index
} else {
false
}
})
.ok_or(RenderGraphError::UnconnectedNodeInputSlot {
input_slot: index,
node: self.label,
})
}
/// Searches the `output_edges` for a [`Edge::SlotEdge`],
/// which `output_index` matches the `index`;
pub fn get_output_slot_edge(&self, index: usize) -> Result<&Edge, RenderGraphError> {
self.output_edges
.iter()
.find(|e| {
if let Edge::SlotEdge { output_index, .. } = e {
*output_index == index
} else {
false
}
})
.ok_or(RenderGraphError::UnconnectedNodeOutputSlot {
output_slot: index,
node: self.label,
})
}
}
/// The internal representation of a [`Node`], with all data required
/// by the [`RenderGraph`](super::RenderGraph).
///
/// The `input_slots` and `output_slots` are provided by the `node`.
pub struct NodeState {
pub label: InternedRenderLabel,
/// The name of the type that implements [`Node`].
pub type_name: &'static str,
pub node: Box<dyn Node>,
pub input_slots: SlotInfos,
pub output_slots: SlotInfos,
pub edges: Edges,
}
impl Debug for NodeState {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
writeln!(f, "{:?} ({:?})", self.label, self.type_name)
}
}
impl NodeState {
/// Creates an [`NodeState`] without edges, but the `input_slots` and `output_slots`
/// are provided by the `node`.
pub fn new<T>(label: InternedRenderLabel, node: T) -> Self
where
T: Node,
{
NodeState {
label,
input_slots: node.input().into(),
output_slots: node.output().into(),
node: Box::new(node),
type_name: core::any::type_name::<T>(),
edges: Edges {
label,
input_edges: Vec::new(),
output_edges: Vec::new(),
},
}
}
/// Retrieves the [`Node`].
pub fn node<T>(&self) -> Result<&T, RenderGraphError>
where
T: Node,
{
self.node
.downcast_ref::<T>()
.ok_or(RenderGraphError::WrongNodeType)
}
/// Retrieves the [`Node`] mutably.
pub fn node_mut<T>(&mut self) -> Result<&mut T, RenderGraphError>
where
T: Node,
{
self.node
.downcast_mut::<T>()
.ok_or(RenderGraphError::WrongNodeType)
}
/// Validates that each input slot corresponds to an input edge.
pub fn validate_input_slots(&self) -> Result<(), RenderGraphError> {
for i in 0..self.input_slots.len() {
self.edges.get_input_slot_edge(i)?;
}
Ok(())
}
/// Validates that each output slot corresponds to an output edge.
pub fn validate_output_slots(&self) -> Result<(), RenderGraphError> {
for i in 0..self.output_slots.len() {
self.edges.get_output_slot_edge(i)?;
}
Ok(())
}
}
/// A [`Node`] without any inputs, outputs and subgraphs, which does nothing when run.
/// Used (as a label) to bundle multiple dependencies into one inside
/// the [`RenderGraph`](super::RenderGraph).
#[derive(Default)]
pub struct EmptyNode;
impl Node for EmptyNode {
fn run(
&self,
_graph: &mut RenderGraphContext,
_render_context: &mut RenderContext,
_world: &World,
) -> Result<(), NodeRunError> {
Ok(())
}
}
/// A [`RenderGraph`](super::RenderGraph) [`Node`] that runs the configured subgraph once.
/// This makes it easier to insert sub-graph runs into a graph.
pub struct RunGraphOnViewNode {
sub_graph: InternedRenderSubGraph,
}
impl RunGraphOnViewNode {
pub fn new<T: RenderSubGraph>(sub_graph: T) -> Self {
Self {
sub_graph: sub_graph.intern(),
}
}
}
impl Node for RunGraphOnViewNode {
fn run(
&self,
graph: &mut RenderGraphContext,
_render_context: &mut RenderContext,
_world: &World,
) -> Result<(), NodeRunError> {
graph.run_sub_graph(self.sub_graph, vec![], Some(graph.view_entity()))?;
Ok(())
}
}
/// This trait should be used instead of the [`Node`] trait when making a render node that runs on a view.
///
/// It is intended to be used with [`ViewNodeRunner`]
pub trait ViewNode {
/// The query that will be used on the view entity.
/// It is guaranteed to run on the view entity, so there's no need for a filter
type ViewQuery: ReadOnlyQueryData;
/// Updates internal node state using the current render [`World`] prior to the run method.
fn update(&mut self, _world: &mut World) {}
/// Runs the graph node logic, issues draw calls, updates the output slots and
/// optionally queues up subgraphs for execution. The graph data, input and output values are
/// passed via the [`RenderGraphContext`].
fn run<'w>(
&self,
graph: &mut RenderGraphContext,
render_context: &mut RenderContext<'w>,
view_query: QueryItem<'w, Self::ViewQuery>,
world: &'w World,
) -> Result<(), NodeRunError>;
}
/// This [`Node`] can be used to run any [`ViewNode`].
/// It will take care of updating the view query in `update()` and running the query in `run()`.
///
/// This [`Node`] exists to help reduce boilerplate when making a render node that runs on a view.
pub struct ViewNodeRunner<N: ViewNode> {
view_query: QueryState<N::ViewQuery>,
node: N,
}
impl<N: ViewNode> ViewNodeRunner<N> {
pub fn new(node: N, world: &mut World) -> Self {
Self {
view_query: world.query_filtered(),
node,
}
}
}
impl<N: ViewNode + FromWorld> FromWorld for ViewNodeRunner<N> {
fn from_world(world: &mut World) -> Self {
Self::new(N::from_world(world), world)
}
}
impl<T> Node for ViewNodeRunner<T>
where
T: ViewNode + Send + Sync + 'static,
{
fn update(&mut self, world: &mut World) {
self.view_query.update_archetypes(world);
self.node.update(world);
}
fn run<'w>(
&self,
graph: &mut RenderGraphContext,
render_context: &mut RenderContext<'w>,
world: &'w World,
) -> Result<(), NodeRunError> {
let Ok(view) = self.view_query.get_manual(world, graph.view_entity()) else {
return Ok(());
};
ViewNode::run(&self.node, graph, render_context, view, world)?;
Ok(())
}
}