bevy/crates/bevy_reflect/src/path.rs
Gino Valente 357a16035d bevy_reflect: Support tuple reflection paths (#7324)
# Objective

Currently the `GetPath` documentation suggests it can be used with `Tuple` types (reflected tuples). However, this is not currently the case.

## Solution

Add reflection path support for `Tuple` types.

---

## Changelog

- Add reflection path support for `Tuple` types
2023-02-06 21:22:45 +00:00

1078 lines
37 KiB
Rust

use std::fmt;
use std::num::ParseIntError;
use crate::{Reflect, ReflectMut, ReflectRef, VariantType};
use thiserror::Error;
/// An error returned from a failed path string query.
#[derive(Debug, PartialEq, Eq, Error)]
pub enum ReflectPathError<'a> {
#[error("expected an identifier at index {index}")]
ExpectedIdent { index: usize },
#[error("the current struct doesn't have a field with the name `{field}`")]
InvalidField { index: usize, field: &'a str },
#[error("the current struct doesn't have a field at the given index")]
InvalidFieldIndex { index: usize, field_index: usize },
#[error("the current tuple struct doesn't have a field with the index {tuple_struct_index}")]
InvalidTupleStructIndex {
index: usize,
tuple_struct_index: usize,
},
#[error("the current tuple doesn't have a field with the index {tuple_index}")]
InvalidTupleIndex { index: usize, tuple_index: usize },
#[error("the current struct variant doesn't have a field with the name `{field}`")]
InvalidStructVariantField { index: usize, field: &'a str },
#[error("the current tuple variant doesn't have a field with the index {tuple_variant_index}")]
InvalidTupleVariantIndex {
index: usize,
tuple_variant_index: usize,
},
#[error("the current list doesn't have a value at the index {list_index}")]
InvalidListIndex { index: usize, list_index: usize },
#[error("encountered an unexpected token `{token}`")]
UnexpectedToken { index: usize, token: &'a str },
#[error("expected token `{token}`, but it wasn't there.")]
ExpectedToken { index: usize, token: &'a str },
#[error("expected a struct, but found a different reflect value")]
ExpectedStruct { index: usize },
#[error("expected a list, but found a different reflect value")]
ExpectedList { index: usize },
#[error("expected a struct variant, but found a different reflect value")]
ExpectedStructVariant { index: usize },
#[error("expected a tuple variant, but found a different reflect value")]
ExpectedTupleVariant { index: usize },
#[error("failed to parse a usize")]
IndexParseError(#[from] ParseIntError),
#[error("failed to downcast to the path result to the given type")]
InvalidDowncast,
}
/// A trait which allows nested [`Reflect`] values to be retrieved with path strings.
///
/// Using these functions repeatedly with the same string requires parsing the string every time.
/// To avoid this cost, it's recommended to construct a [`ParsedPath`] instead.
///
/// # Syntax
///
/// ## Structs
///
/// Field paths for [`Struct`] elements use the standard Rust field access syntax of
/// dot and field name: `.field_name`.
///
/// Additionally, struct fields may be accessed by their index within the struct's definition.
/// This is accomplished by using the hash symbol (`#`) in place of the standard dot: `#0`.
///
/// Accessing a struct's field by index can speed up fetches at runtime due to the removed
/// need for string matching.
/// And while this can be more performant, it's best to keep in mind the tradeoffs when
/// utilizing such optimizations.
/// For example, this can result in fairly fragile code as the string paths will need to be
/// kept in sync with the struct definitions since the order of fields could be easily changed.
/// Because of this, storing these kinds of paths in persistent storage (i.e. game assets)
/// is strongly discouraged.
///
/// Note that a leading dot (`.`) or hash (`#`) token is implied for the first item in a path,
/// and may therefore be omitted.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyStruct {
/// value: u32
/// }
///
/// let my_struct = MyStruct { value: 123 };
/// // Access via field name
/// assert_eq!(my_struct.path::<u32>(".value").unwrap(), &123);
/// // Access via field index
/// assert_eq!(my_struct.path::<u32>("#0").unwrap(), &123);
/// ```
///
/// ## Tuples and Tuple Structs
///
/// [`Tuple`] and [`TupleStruct`] elements also follow a conventional Rust syntax.
/// Fields are accessed with a dot and the field index: `.0`.
///
/// Note that a leading dot (`.`) token is implied for the first item in a path,
/// and may therefore be omitted.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyTupleStruct(u32);
///
/// let my_tuple_struct = MyTupleStruct(123);
/// assert_eq!(my_tuple_struct.path::<u32>(".0").unwrap(), &123);
/// ```
///
/// ## Lists and Arrays
///
/// [`List`] and [`Array`] elements are accessed with brackets: `[0]`.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath};
/// let my_list: Vec<u32> = vec![1, 2, 3];
/// assert_eq!(my_list.path::<u32>("[2]").unwrap(), &3);
/// ```
///
/// ## Enums
///
/// Pathing for [`Enum`] elements works a bit differently than in normal Rust.
/// Usually, you would need to pattern match an enum, branching off on the desired variants.
/// Paths used by this trait do not have any pattern matching capabilities;
/// instead, they assume the variant is already known ahead of time.
///
/// The syntax used, therefore, depends on the variant being accessed:
/// - Struct variants use the struct syntax (outlined above)
/// - Tuple variants use the tuple syntax (outlined above)
/// - Unit variants have no fields to access
///
/// If the variant cannot be known ahead of time, the path will need to be split up
/// and proper enum pattern matching will need to be handled manually.
///
/// ### Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// enum MyEnum {
/// Unit,
/// Tuple(bool),
/// Struct {
/// value: u32
/// }
/// }
///
/// let tuple_variant = MyEnum::Tuple(true);
/// assert_eq!(tuple_variant.path::<bool>(".0").unwrap(), &true);
///
/// let struct_variant = MyEnum::Struct { value: 123 };
/// // Access via field name
/// assert_eq!(struct_variant.path::<u32>(".value").unwrap(), &123);
/// // Access via field index
/// assert_eq!(struct_variant.path::<u32>("#0").unwrap(), &123);
///
/// // Error: Expected struct variant
/// assert!(matches!(tuple_variant.path::<u32>(".value"), Err(_)));
/// ```
///
/// # Chaining
///
/// Using the aforementioned syntax, path items may be chained one after another
/// to create a full path to a nested element.
///
/// ## Example
/// ```
/// # use bevy_reflect::{GetPath, Reflect};
/// #[derive(Reflect)]
/// struct MyStruct {
/// value: Vec<Option<u32>>
/// }
///
/// let my_struct = MyStruct {
/// value: vec![None, None, Some(123)],
/// };
/// assert_eq!(
/// my_struct.path::<u32>(".value[2].0").unwrap(),
/// &123,
/// );
/// ```
///
/// [`Struct`]: crate::Struct
/// [`Tuple`]: crate::Tuple
/// [`TupleStruct`]: crate::TupleStruct
/// [`List`]: crate::List
/// [`Array`]: crate::Array
/// [`Enum`]: crate::Enum
pub trait GetPath {
/// Returns a reference to the value specified by `path`.
///
/// To retrieve a statically typed reference, use
/// [`path`][GetPath::path].
fn reflect_path<'r, 'p>(
&'r self,
path: &'p str,
) -> Result<&'r dyn Reflect, ReflectPathError<'p>>;
/// Returns a mutable reference to the value specified by `path`.
///
/// To retrieve a statically typed mutable reference, use
/// [`path_mut`][GetPath::path_mut].
fn reflect_path_mut<'r, 'p>(
&'r mut self,
path: &'p str,
) -> Result<&'r mut dyn Reflect, ReflectPathError<'p>>;
/// Returns a statically typed reference to the value specified by `path`.
///
/// This will automatically handle downcasting to type `T`.
/// The downcast will fail if this value is not of type `T`
/// (which may be the case when using dynamic types like [`DynamicStruct`]).
///
/// [`DynamicStruct`]: crate::DynamicStruct
fn path<'r, 'p, T: Reflect>(&'r self, path: &'p str) -> Result<&'r T, ReflectPathError<'p>> {
self.reflect_path(path).and_then(|p| {
p.downcast_ref::<T>()
.ok_or(ReflectPathError::InvalidDowncast)
})
}
/// Returns a statically typed mutable reference to the value specified by `path`.
///
/// This will automatically handle downcasting to type `T`.
/// The downcast will fail if this value is not of type `T`
/// (which may be the case when using dynamic types like [`DynamicStruct`]).
///
/// [`DynamicStruct`]: crate::DynamicStruct
fn path_mut<'r, 'p, T: Reflect>(
&'r mut self,
path: &'p str,
) -> Result<&'r mut T, ReflectPathError<'p>> {
self.reflect_path_mut(path).and_then(|p| {
p.downcast_mut::<T>()
.ok_or(ReflectPathError::InvalidDowncast)
})
}
}
impl<T: Reflect> GetPath for T {
fn reflect_path<'r, 'p>(
&'r self,
path: &'p str,
) -> Result<&'r dyn Reflect, ReflectPathError<'p>> {
(self as &dyn Reflect).reflect_path(path)
}
fn reflect_path_mut<'r, 'p>(
&'r mut self,
path: &'p str,
) -> Result<&'r mut dyn Reflect, ReflectPathError<'p>> {
(self as &mut dyn Reflect).reflect_path_mut(path)
}
}
impl GetPath for dyn Reflect {
fn reflect_path<'r, 'p>(
&'r self,
path: &'p str,
) -> Result<&'r dyn Reflect, ReflectPathError<'p>> {
let mut current: &dyn Reflect = self;
for (access, current_index) in PathParser::new(path) {
current = access?.read_element(current, current_index)?;
}
Ok(current)
}
fn reflect_path_mut<'r, 'p>(
&'r mut self,
path: &'p str,
) -> Result<&'r mut dyn Reflect, ReflectPathError<'p>> {
let mut current: &mut dyn Reflect = self;
for (access, current_index) in PathParser::new(path) {
current = access?.read_element_mut(current, current_index)?;
}
Ok(current)
}
}
/// A pre-parsed path to an element within a type.
///
/// This struct may be used like [`GetPath`] but removes the cost of parsing the path
/// string at each element access.
///
/// It's recommended to use this in place of `GetPath` when the path string is
/// unlikely to be changed and will be accessed repeatedly.
#[derive(Clone, Debug, PartialEq, PartialOrd, Ord, Eq, Hash)]
pub struct ParsedPath(
/// This is the boxed slice of pre-parsed accesses.
///
/// Each item in the slice contains the access along with the character
/// index of the start of the access within the parsed path string.
///
/// The index is mainly used for more helpful error reporting.
Box<[(Access, usize)]>,
);
impl ParsedPath {
/// Parses a [`ParsedPath`] from a string.
///
/// Returns an error if the string does not represent a valid path to an element.
///
/// The exact format for path strings can be found in the documentation for [`GetPath`].
/// In short, though, a path consists of one or more chained accessor strings.
/// These are:
/// - Named field access (`.field`)
/// - Unnamed field access (`.1`)
/// - Field index access (`#0`)
/// - Sequence access (`[2]`)
///
/// # Example
/// ```
/// # use bevy_reflect::{ParsedPath, Reflect};
/// #[derive(Reflect)]
/// struct Foo {
/// bar: Bar,
/// }
///
/// #[derive(Reflect)]
/// struct Bar {
/// baz: Baz,
/// }
///
/// #[derive(Reflect)]
/// struct Baz(f32, Vec<Option<u32>>);
///
/// let foo = Foo {
/// bar: Bar {
/// baz: Baz(3.14, vec![None, None, Some(123)])
/// },
/// };
///
/// let parsed_path = ParsedPath::parse("bar#0.1[2].0").unwrap();
/// // Breakdown:
/// // "bar" - Access struct field named "bar"
/// // "#0" - Access struct field at index 0
/// // ".1" - Access tuple struct field at index 1
/// // "[2]" - Access list element at index 2
/// // ".0" - Access tuple variant field at index 0
///
/// assert_eq!(parsed_path.element::<u32>(&foo).unwrap(), &123);
/// ```
///
pub fn parse(string: &str) -> Result<Self, ReflectPathError<'_>> {
let mut parts = Vec::new();
for (access, idx) in PathParser::new(string) {
parts.push((access?.to_owned(), idx));
}
Ok(Self(parts.into_boxed_slice()))
}
/// Gets a read-only reference to the specified element on the given [`Reflect`] object.
///
/// Returns an error if the path is invalid for the provided type.
///
/// See [`element_mut`](Self::reflect_element_mut) for a typed version of this method.
pub fn reflect_element<'r, 'p>(
&'p self,
root: &'r dyn Reflect,
) -> Result<&'r dyn Reflect, ReflectPathError<'p>> {
let mut current = root;
for (access, current_index) in self.0.iter() {
current = access.to_ref().read_element(current, *current_index)?;
}
Ok(current)
}
/// Gets a mutable reference to the specified element on the given [`Reflect`] object.
///
/// Returns an error if the path is invalid for the provided type.
///
/// See [`element_mut`](Self::element_mut) for a typed version of this method.
pub fn reflect_element_mut<'r, 'p>(
&'p mut self,
root: &'r mut dyn Reflect,
) -> Result<&'r mut dyn Reflect, ReflectPathError<'p>> {
let mut current = root;
for (access, current_index) in self.0.iter() {
current = access.to_ref().read_element_mut(current, *current_index)?;
}
Ok(current)
}
/// Gets a typed, read-only reference to the specified element on the given [`Reflect`] object.
///
/// Returns an error if the path is invalid for the provided type.
///
/// See [`reflect_element`](Self::reflect_element) for an untyped version of this method.
pub fn element<'r, 'p, T: Reflect>(
&'p self,
root: &'r dyn Reflect,
) -> Result<&'r T, ReflectPathError<'p>> {
self.reflect_element(root).and_then(|p| {
p.downcast_ref::<T>()
.ok_or(ReflectPathError::InvalidDowncast)
})
}
/// Gets a typed, read-only reference to the specified element on the given [`Reflect`] object.
///
/// Returns an error if the path is invalid for the provided type.
///
/// See [`reflect_element_mut`](Self::reflect_element_mut) for an untyped version of this method.
pub fn element_mut<'r, 'p, T: Reflect>(
&'p mut self,
root: &'r mut dyn Reflect,
) -> Result<&'r mut T, ReflectPathError<'p>> {
self.reflect_element_mut(root).and_then(|p| {
p.downcast_mut::<T>()
.ok_or(ReflectPathError::InvalidDowncast)
})
}
}
impl fmt::Display for ParsedPath {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
for (idx, (access, _)) in self.0.iter().enumerate() {
match access {
Access::Field(field) => {
if idx != 0 {
Token::DOT.fmt(f)?;
}
f.write_str(field.as_str())?;
}
Access::FieldIndex(index) => {
Token::CROSSHATCH.fmt(f)?;
index.fmt(f)?;
}
Access::TupleIndex(index) => {
if idx != 0 {
Token::DOT.fmt(f)?;
}
index.fmt(f)?;
}
Access::ListIndex(index) => {
Token::OPEN_BRACKET.fmt(f)?;
index.fmt(f)?;
Token::CLOSE_BRACKET.fmt(f)?;
}
}
}
Ok(())
}
}
/// A singular owned element access within a path.
///
/// Can be applied to a `dyn Reflect` to get a reference to the targeted element.
///
/// A path is composed of multiple accesses in sequence.
#[derive(Debug, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
enum Access {
Field(String),
FieldIndex(usize),
TupleIndex(usize),
ListIndex(usize),
}
impl Access {
fn to_ref(&self) -> AccessRef<'_> {
match self {
Self::Field(value) => AccessRef::Field(value),
Self::FieldIndex(value) => AccessRef::FieldIndex(*value),
Self::TupleIndex(value) => AccessRef::TupleIndex(*value),
Self::ListIndex(value) => AccessRef::ListIndex(*value),
}
}
}
/// A singular borrowed element access within a path.
///
/// Can be applied to a `dyn Reflect` to get a reference to the targeted element.
///
/// Does not own the backing store it's sourced from.
/// For an owned version, you can convert one to an [`Access`].
#[derive(Debug)]
enum AccessRef<'a> {
Field(&'a str),
FieldIndex(usize),
TupleIndex(usize),
ListIndex(usize),
}
impl<'a> AccessRef<'a> {
fn to_owned(&self) -> Access {
match self {
Self::Field(value) => Access::Field(value.to_string()),
Self::FieldIndex(value) => Access::FieldIndex(*value),
Self::TupleIndex(value) => Access::TupleIndex(*value),
Self::ListIndex(value) => Access::ListIndex(*value),
}
}
fn read_element<'r>(
&self,
current: &'r dyn Reflect,
current_index: usize,
) -> Result<&'r dyn Reflect, ReflectPathError<'a>> {
match (self, current.reflect_ref()) {
(Self::Field(field), ReflectRef::Struct(reflect_struct)) => reflect_struct
.field(field)
.ok_or(ReflectPathError::InvalidField {
index: current_index,
field,
}),
(Self::FieldIndex(field_index), ReflectRef::Struct(reflect_struct)) => reflect_struct
.field_at(*field_index)
.ok_or(ReflectPathError::InvalidFieldIndex {
index: current_index,
field_index: *field_index,
}),
(Self::TupleIndex(tuple_index), ReflectRef::TupleStruct(reflect_struct)) => {
reflect_struct.field(*tuple_index).ok_or(
ReflectPathError::InvalidTupleStructIndex {
index: current_index,
tuple_struct_index: *tuple_index,
},
)
}
(Self::TupleIndex(tuple_index), ReflectRef::Tuple(reflect_tuple)) => reflect_tuple
.field(*tuple_index)
.ok_or(ReflectPathError::InvalidTupleIndex {
index: current_index,
tuple_index: *tuple_index,
}),
(Self::ListIndex(list_index), ReflectRef::List(reflect_list)) => reflect_list
.get(*list_index)
.ok_or(ReflectPathError::InvalidListIndex {
index: current_index,
list_index: *list_index,
}),
(Self::ListIndex(list_index), ReflectRef::Array(reflect_list)) => reflect_list
.get(*list_index)
.ok_or(ReflectPathError::InvalidListIndex {
index: current_index,
list_index: *list_index,
}),
(Self::ListIndex(_), _) => Err(ReflectPathError::ExpectedList {
index: current_index,
}),
(Self::Field(field), ReflectRef::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Struct => {
reflect_enum
.field(field)
.ok_or(ReflectPathError::InvalidField {
index: current_index,
field,
})
}
_ => Err(ReflectPathError::ExpectedStructVariant {
index: current_index,
}),
}
}
(Self::FieldIndex(field_index), ReflectRef::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Struct => reflect_enum.field_at(*field_index).ok_or(
ReflectPathError::InvalidFieldIndex {
index: current_index,
field_index: *field_index,
},
),
_ => Err(ReflectPathError::ExpectedStructVariant {
index: current_index,
}),
}
}
(Self::TupleIndex(tuple_variant_index), ReflectRef::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Tuple => reflect_enum.field_at(*tuple_variant_index).ok_or(
ReflectPathError::InvalidTupleVariantIndex {
index: current_index,
tuple_variant_index: *tuple_variant_index,
},
),
_ => Err(ReflectPathError::ExpectedTupleVariant {
index: current_index,
}),
}
}
_ => Err(ReflectPathError::ExpectedStruct {
index: current_index,
}),
}
}
fn read_element_mut<'r>(
&self,
current: &'r mut dyn Reflect,
current_index: usize,
) -> Result<&'r mut dyn Reflect, ReflectPathError<'a>> {
match (self, current.reflect_mut()) {
(Self::Field(field), ReflectMut::Struct(reflect_struct)) => reflect_struct
.field_mut(field)
.ok_or(ReflectPathError::InvalidField {
index: current_index,
field,
}),
(Self::FieldIndex(field_index), ReflectMut::Struct(reflect_struct)) => reflect_struct
.field_at_mut(*field_index)
.ok_or(ReflectPathError::InvalidFieldIndex {
index: current_index,
field_index: *field_index,
}),
(Self::TupleIndex(tuple_index), ReflectMut::TupleStruct(reflect_struct)) => {
reflect_struct.field_mut(*tuple_index).ok_or(
ReflectPathError::InvalidTupleStructIndex {
index: current_index,
tuple_struct_index: *tuple_index,
},
)
}
(Self::TupleIndex(tuple_index), ReflectMut::Tuple(reflect_tuple)) => reflect_tuple
.field_mut(*tuple_index)
.ok_or(ReflectPathError::InvalidTupleIndex {
index: current_index,
tuple_index: *tuple_index,
}),
(Self::ListIndex(list_index), ReflectMut::List(reflect_list)) => reflect_list
.get_mut(*list_index)
.ok_or(ReflectPathError::InvalidListIndex {
index: current_index,
list_index: *list_index,
}),
(Self::ListIndex(list_index), ReflectMut::Array(reflect_list)) => reflect_list
.get_mut(*list_index)
.ok_or(ReflectPathError::InvalidListIndex {
index: current_index,
list_index: *list_index,
}),
(Self::ListIndex(_), _) => Err(ReflectPathError::ExpectedList {
index: current_index,
}),
(Self::Field(field), ReflectMut::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Struct => {
reflect_enum
.field_mut(field)
.ok_or(ReflectPathError::InvalidField {
index: current_index,
field,
})
}
_ => Err(ReflectPathError::ExpectedStructVariant {
index: current_index,
}),
}
}
(Self::FieldIndex(field_index), ReflectMut::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Struct => reflect_enum.field_at_mut(*field_index).ok_or(
ReflectPathError::InvalidFieldIndex {
index: current_index,
field_index: *field_index,
},
),
_ => Err(ReflectPathError::ExpectedStructVariant {
index: current_index,
}),
}
}
(Self::TupleIndex(tuple_variant_index), ReflectMut::Enum(reflect_enum)) => {
match reflect_enum.variant_type() {
VariantType::Tuple => reflect_enum.field_at_mut(*tuple_variant_index).ok_or(
ReflectPathError::InvalidTupleVariantIndex {
index: current_index,
tuple_variant_index: *tuple_variant_index,
},
),
_ => Err(ReflectPathError::ExpectedTupleVariant {
index: current_index,
}),
}
}
_ => Err(ReflectPathError::ExpectedStruct {
index: current_index,
}),
}
}
}
struct PathParser<'a> {
path: &'a str,
index: usize,
}
impl<'a> PathParser<'a> {
fn new(path: &'a str) -> Self {
Self { path, index: 0 }
}
fn next_token(&mut self) -> Option<Token<'a>> {
if self.index >= self.path.len() {
return None;
}
match self.path[self.index..].chars().next().unwrap() {
Token::DOT => {
self.index += 1;
return Some(Token::Dot);
}
Token::CROSSHATCH => {
self.index += 1;
return Some(Token::CrossHatch);
}
Token::OPEN_BRACKET => {
self.index += 1;
return Some(Token::OpenBracket);
}
Token::CLOSE_BRACKET => {
self.index += 1;
return Some(Token::CloseBracket);
}
_ => {}
}
// we can assume we are parsing an ident now
for (char_index, character) in self.path[self.index..].chars().enumerate() {
match character {
Token::DOT | Token::CROSSHATCH | Token::OPEN_BRACKET | Token::CLOSE_BRACKET => {
let ident = Token::Ident(&self.path[self.index..self.index + char_index]);
self.index += char_index;
return Some(ident);
}
_ => {}
}
}
let ident = Token::Ident(&self.path[self.index..]);
self.index = self.path.len();
Some(ident)
}
fn token_to_access(&mut self, token: Token<'a>) -> Result<AccessRef<'a>, ReflectPathError<'a>> {
let current_index = self.index;
match token {
Token::Dot => {
if let Some(Token::Ident(value)) = self.next_token() {
value
.parse::<usize>()
.map(AccessRef::TupleIndex)
.or(Ok(AccessRef::Field(value)))
} else {
Err(ReflectPathError::ExpectedIdent {
index: current_index,
})
}
}
Token::CrossHatch => {
if let Some(Token::Ident(value)) = self.next_token() {
Ok(AccessRef::FieldIndex(value.parse::<usize>()?))
} else {
Err(ReflectPathError::ExpectedIdent {
index: current_index,
})
}
}
Token::OpenBracket => {
let access = if let Some(Token::Ident(value)) = self.next_token() {
AccessRef::ListIndex(value.parse::<usize>()?)
} else {
return Err(ReflectPathError::ExpectedIdent {
index: current_index,
});
};
if !matches!(self.next_token(), Some(Token::CloseBracket)) {
return Err(ReflectPathError::ExpectedToken {
index: current_index,
token: Token::OPEN_BRACKET_STR,
});
}
Ok(access)
}
Token::CloseBracket => Err(ReflectPathError::UnexpectedToken {
index: current_index,
token: Token::CLOSE_BRACKET_STR,
}),
Token::Ident(value) => value
.parse::<usize>()
.map(AccessRef::TupleIndex)
.or(Ok(AccessRef::Field(value))),
}
}
}
impl<'a> Iterator for PathParser<'a> {
type Item = (Result<AccessRef<'a>, ReflectPathError<'a>>, usize);
fn next(&mut self) -> Option<Self::Item> {
let token = self.next_token()?;
let index = self.index;
Some((self.token_to_access(token), index))
}
}
enum Token<'a> {
Dot,
CrossHatch,
OpenBracket,
CloseBracket,
Ident(&'a str),
}
impl<'a> Token<'a> {
const DOT: char = '.';
const CROSSHATCH: char = '#';
const OPEN_BRACKET: char = '[';
const CLOSE_BRACKET: char = ']';
const OPEN_BRACKET_STR: &'static str = "[";
const CLOSE_BRACKET_STR: &'static str = "]";
}
#[cfg(test)]
#[allow(clippy::float_cmp, clippy::approx_constant)]
mod tests {
use super::*;
use crate as bevy_reflect;
use crate::*;
#[derive(Reflect)]
struct A {
w: usize,
x: B,
y: Vec<C>,
z: D,
unit_variant: F,
tuple_variant: F,
struct_variant: F,
array: [i32; 3],
tuple: (bool, f32),
}
#[derive(Reflect)]
struct B {
foo: usize,
bar: C,
}
#[derive(Reflect, FromReflect)]
struct C {
baz: f32,
}
#[derive(Reflect)]
struct D(E);
#[derive(Reflect)]
struct E(f32, usize);
#[derive(Reflect, FromReflect, PartialEq, Debug)]
enum F {
Unit,
Tuple(u32, u32),
Struct { value: char },
}
#[test]
fn parsed_path_parse() {
assert_eq!(
&*ParsedPath::parse("w").unwrap().0,
&[(Access::Field("w".to_string()), 1)]
);
assert_eq!(
&*ParsedPath::parse("x.foo").unwrap().0,
&[
(Access::Field("x".to_string()), 1),
(Access::Field("foo".to_string()), 2)
]
);
assert_eq!(
&*ParsedPath::parse("x.bar.baz").unwrap().0,
&[
(Access::Field("x".to_string()), 1),
(Access::Field("bar".to_string()), 2),
(Access::Field("baz".to_string()), 6)
]
);
assert_eq!(
&*ParsedPath::parse("y[1].baz").unwrap().0,
&[
(Access::Field("y".to_string()), 1),
(Access::ListIndex(1), 2),
(Access::Field("baz".to_string()), 5)
]
);
assert_eq!(
&*ParsedPath::parse("z.0.1").unwrap().0,
&[
(Access::Field("z".to_string()), 1),
(Access::TupleIndex(0), 2),
(Access::TupleIndex(1), 4),
]
);
assert_eq!(
&*ParsedPath::parse("x#0").unwrap().0,
&[
(Access::Field("x".to_string()), 1),
(Access::FieldIndex(0), 2),
]
);
assert_eq!(
&*ParsedPath::parse("x#0#1").unwrap().0,
&[
(Access::Field("x".to_string()), 1),
(Access::FieldIndex(0), 2),
(Access::FieldIndex(1), 4)
]
);
}
#[test]
fn parsed_path_get_field() {
let a = A {
w: 1,
x: B {
foo: 10,
bar: C { baz: 3.14 },
},
y: vec![C { baz: 1.0 }, C { baz: 2.0 }],
z: D(E(10.0, 42)),
unit_variant: F::Unit,
tuple_variant: F::Tuple(123, 321),
struct_variant: F::Struct { value: 'm' },
array: [86, 75, 309],
tuple: (true, 1.23),
};
let b = ParsedPath::parse("w").unwrap();
let c = ParsedPath::parse("x.foo").unwrap();
let d = ParsedPath::parse("x.bar.baz").unwrap();
let e = ParsedPath::parse("y[1].baz").unwrap();
let f = ParsedPath::parse("z.0.1").unwrap();
let g = ParsedPath::parse("x#0").unwrap();
let h = ParsedPath::parse("x#1#0").unwrap();
let i = ParsedPath::parse("unit_variant").unwrap();
let j = ParsedPath::parse("tuple_variant.1").unwrap();
let k = ParsedPath::parse("struct_variant.value").unwrap();
let l = ParsedPath::parse("struct_variant#0").unwrap();
let m = ParsedPath::parse("array[2]").unwrap();
let n = ParsedPath::parse("tuple.1").unwrap();
for _ in 0..30 {
assert_eq!(*b.element::<usize>(&a).unwrap(), 1);
assert_eq!(*c.element::<usize>(&a).unwrap(), 10);
assert_eq!(*d.element::<f32>(&a).unwrap(), 3.14);
assert_eq!(*e.element::<f32>(&a).unwrap(), 2.0);
assert_eq!(*f.element::<usize>(&a).unwrap(), 42);
assert_eq!(*g.element::<usize>(&a).unwrap(), 10);
assert_eq!(*h.element::<f32>(&a).unwrap(), 3.14);
assert_eq!(*i.element::<F>(&a).unwrap(), F::Unit);
assert_eq!(*j.element::<u32>(&a).unwrap(), 321);
assert_eq!(*k.element::<char>(&a).unwrap(), 'm');
assert_eq!(*l.element::<char>(&a).unwrap(), 'm');
assert_eq!(*m.element::<i32>(&a).unwrap(), 309);
assert_eq!(*n.element::<f32>(&a).unwrap(), 1.23);
}
}
#[test]
fn reflect_array_behaves_like_list() {
#[derive(Reflect)]
struct A {
list: Vec<u8>,
array: [u8; 10],
}
let a = A {
list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
};
assert_eq!(*a.path::<u8>("list[5]").unwrap(), 5);
assert_eq!(*a.path::<u8>("array[5]").unwrap(), 5);
assert_eq!(*a.path::<u8>("list[0]").unwrap(), 0);
assert_eq!(*a.path::<u8>("array[0]").unwrap(), 0);
}
#[test]
fn reflect_array_behaves_like_list_mut() {
#[derive(Reflect)]
struct A {
list: Vec<u8>,
array: [u8; 10],
}
let mut a = A {
list: vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
array: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
};
assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 5);
assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 5);
*a.path_mut::<u8>("list[5]").unwrap() = 10;
*a.path_mut::<u8>("array[5]").unwrap() = 10;
assert_eq!(*a.path_mut::<u8>("list[5]").unwrap(), 10);
assert_eq!(*a.path_mut::<u8>("array[5]").unwrap(), 10);
}
#[test]
fn reflect_path() {
let mut a = A {
w: 1,
x: B {
foo: 10,
bar: C { baz: 3.14 },
},
y: vec![C { baz: 1.0 }, C { baz: 2.0 }],
z: D(E(10.0, 42)),
unit_variant: F::Unit,
tuple_variant: F::Tuple(123, 321),
struct_variant: F::Struct { value: 'm' },
array: [86, 75, 309],
tuple: (true, 1.23),
};
assert_eq!(*a.path::<usize>("w").unwrap(), 1);
assert_eq!(*a.path::<usize>("x.foo").unwrap(), 10);
assert_eq!(*a.path::<f32>("x.bar.baz").unwrap(), 3.14);
assert_eq!(*a.path::<f32>("y[1].baz").unwrap(), 2.0);
assert_eq!(*a.path::<usize>("z.0.1").unwrap(), 42);
assert_eq!(*a.path::<usize>("x#0").unwrap(), 10);
assert_eq!(*a.path::<f32>("x#1#0").unwrap(), 3.14);
assert_eq!(*a.path::<F>("unit_variant").unwrap(), F::Unit);
assert_eq!(*a.path::<u32>("tuple_variant.1").unwrap(), 321);
assert_eq!(*a.path::<char>("struct_variant.value").unwrap(), 'm');
assert_eq!(*a.path::<char>("struct_variant#0").unwrap(), 'm');
assert_eq!(*a.path::<i32>("array[2]").unwrap(), 309);
assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 1.23);
*a.path_mut::<f32>("tuple.1").unwrap() = 3.21;
assert_eq!(*a.path::<f32>("tuple.1").unwrap(), 3.21);
*a.path_mut::<f32>("y[1].baz").unwrap() = 3.0;
assert_eq!(a.y[1].baz, 3.0);
*a.path_mut::<u32>("tuple_variant.0").unwrap() = 1337;
assert_eq!(a.tuple_variant, F::Tuple(1337, 321));
assert_eq!(
a.reflect_path("x.notreal").err().unwrap(),
ReflectPathError::InvalidField {
index: 2,
field: "notreal"
}
);
assert_eq!(
a.reflect_path("unit_variant.0").err().unwrap(),
ReflectPathError::ExpectedTupleVariant { index: 13 }
);
assert_eq!(
a.reflect_path("x..").err().unwrap(),
ReflectPathError::ExpectedIdent { index: 2 }
);
assert_eq!(
a.reflect_path("x[0]").err().unwrap(),
ReflectPathError::ExpectedList { index: 2 }
);
assert_eq!(
a.reflect_path("y.x").err().unwrap(),
ReflectPathError::ExpectedStruct { index: 2 }
);
assert!(matches!(
a.reflect_path("y[badindex]"),
Err(ReflectPathError::IndexParseError(_))
));
}
}