# Objective - Improve rendering performance, particularly by avoiding the large system commands costs of using the ECS in the way that the render world does. ## Solution - Define `EntityHasher` that calculates a hash from the `Entity.to_bits()` by `i | (i.wrapping_mul(0x517cc1b727220a95) << 32)`. `0x517cc1b727220a95` is something like `u64::MAX / N` for N that gives a value close to π and that works well for hashing. Thanks for @SkiFire13 for the suggestion and to @nicopap for alternative suggestions and discussion. This approach comes from `rustc-hash` (a.k.a. `FxHasher`) with some tweaks for the case of hashing an `Entity`. `FxHasher` and `SeaHasher` were also tested but were significantly slower. - Define `EntityHashMap` type that uses the `EntityHashser` - Use `EntityHashMap<Entity, T>` for render world entity storage, including: - `RenderMaterialInstances` - contains the `AssetId<M>` of the material associated with the entity. Also for 2D. - `RenderMeshInstances` - contains mesh transforms, flags and properties about mesh entities. Also for 2D. - `SkinIndices` and `MorphIndices` - contains the skin and morph index for an entity, respectively - `ExtractedSprites` - `ExtractedUiNodes` ## Benchmarks All benchmarks have been conducted on an M1 Max connected to AC power. The tests are run for 1500 frames. The 1000th frame is captured for comparison to check for visual regressions. There were none. ### 2D Meshes `bevymark --benchmark --waves 160 --per-wave 1000 --mode mesh2d` #### `--ordered-z` This test spawns the 2D meshes with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1112" alt="Screenshot 2023-09-27 at 07 50 45" src="https://github.com/bevyengine/bevy/assets/302146/e140bc98-7091-4a3b-8ae1-ab75d16d2ccb"> -39.1% median frame time. #### Random This test spawns the 2D meshes with random z. This not only makes the batching and transparent 2D pass lookups get a lot of cache misses, it also currently means that the meshes are almost certain to not be batchable. <img width="1108" alt="Screenshot 2023-09-27 at 07 51 28" src="https://github.com/bevyengine/bevy/assets/302146/29c2e813-645a-43ce-982a-55df4bf7d8c4"> -7.2% median frame time. ### 3D Meshes `many_cubes --benchmark` <img width="1112" alt="Screenshot 2023-09-27 at 07 51 57" src="https://github.com/bevyengine/bevy/assets/302146/1a729673-3254-4e2a-9072-55e27c69f0fc"> -7.7% median frame time. ### Sprites **NOTE: On `main` sprites are using `SparseSet<Entity, T>`!** `bevymark --benchmark --waves 160 --per-wave 1000 --mode sprite` #### `--ordered-z` This test spawns the sprites with z incrementing back to front, which is the ideal arrangement allocation order as it matches the sorted render order which means lookups have a high cache hit rate. <img width="1116" alt="Screenshot 2023-09-27 at 07 52 31" src="https://github.com/bevyengine/bevy/assets/302146/bc8eab90-e375-4d31-b5cd-f55f6f59ab67"> +13.0% median frame time. #### Random This test spawns the sprites with random z. This makes the batching and transparent 2D pass lookups get a lot of cache misses. <img width="1109" alt="Screenshot 2023-09-27 at 07 53 01" src="https://github.com/bevyengine/bevy/assets/302146/22073f5d-99a7-49b0-9584-d3ac3eac3033"> +0.6% median frame time. ### UI **NOTE: On `main` UI is using `SparseSet<Entity, T>`!** `many_buttons` <img width="1111" alt="Screenshot 2023-09-27 at 07 53 26" src="https://github.com/bevyengine/bevy/assets/302146/66afd56d-cbe4-49e7-8b64-2f28f6043d85"> +15.1% median frame time. ## Alternatives - Cart originally suggested trying out `SparseSet<Entity, T>` and indeed that is slightly faster under ideal conditions. However, `PassHashMap<Entity, T>` has better worst case performance when data is randomly distributed, rather than in sorted render order, and does not have the worst case memory usage that `SparseSet`'s dense `Vec<usize>` that maps from the `Entity` index to sparse index into `Vec<T>`. This dense `Vec` has to be as large as the largest Entity index used with the `SparseSet`. - I also tested `PassHashMap<u32, T>`, intending to use `Entity.index()` as the key, but this proved to sometimes be slower and mostly no different. - The only outstanding approach that has not been implemented and tested is to _not_ clear the render world of its entities each frame. That has its own problems, though they could perhaps be solved. - Performance-wise, if the entities and their component data were not cleared, then they would incur table moves on spawn, and should not thereafter, rather just their component data would be overwritten. Ideally we would have a neat way of either updating data in-place via `&mut T` queries, or inserting components if not present. This would likely be quite cumbersome to have to remember to do everywhere, but perhaps it only needs to be done in the more performance-sensitive systems. - The main problem to solve however is that we want to both maintain a mapping between main world entities and render world entities, be able to run the render app and world in parallel with the main app and world for pipelined rendering, and at the same time be able to spawn entities in the render world in such a way that those Entity ids do not collide with those spawned in the main world. This is potentially quite solvable, but could well be a lot of ECS work to do it in a way that makes sense. --- ## Changelog - Changed: Component data for entities to be drawn are no longer stored on entities in the render world. Instead, data is stored in a `EntityHashMap<Entity, T>` in various resources. This brings significant performance benefits due to the way the render app clears entities every frame. Resources of most interest are `RenderMeshInstances` and `RenderMaterialInstances`, and their 2D counterparts. ## Migration Guide Previously the render app extracted mesh entities and their component data from the main world and stored them as entities and components in the render world. Now they are extracted into essentially `EntityHashMap<Entity, T>` where `T` are structs containing an appropriate group of data. This means that while extract set systems will continue to run extract queries against the main world they will store their data in hash maps. Also, systems in later sets will either need to look up entities in the available resources such as `RenderMeshInstances`, or maintain their own `EntityHashMap<Entity, T>` for their own data. Before: ```rust fn queue_custom( material_meshes: Query<(Entity, &MeshTransforms, &Handle<Mesh>), With<InstanceMaterialData>>, ) { ... for (entity, mesh_transforms, mesh_handle) in &material_meshes { ... } } ``` After: ```rust fn queue_custom( render_mesh_instances: Res<RenderMeshInstances>, instance_entities: Query<Entity, With<InstanceMaterialData>>, ) { ... for entity in &instance_entities { let Some(mesh_instance) = render_mesh_instances.get(&entity) else { continue; }; // The mesh handle in `AssetId<Mesh>` form, and the `MeshTransforms` can now // be found in `mesh_instance` which is a `RenderMeshInstance` ... } } ``` --------- Co-authored-by: robtfm <50659922+robtfm@users.noreply.github.com> |
||
---|---|---|
.. | ||
examples | ||
macros | ||
src | ||
Cargo.toml | ||
README.md |
Bevy ECS
What is Bevy ECS?
Bevy ECS is an Entity Component System custom-built for the Bevy game engine. It aims to be simple to use, ergonomic, fast, massively parallel, opinionated, and featureful. It was created specifically for Bevy's needs, but it can easily be used as a standalone crate in other projects.
ECS
All app logic in Bevy uses the Entity Component System paradigm, which is often shortened to ECS. ECS is a software pattern that involves breaking your program up into Entities, Components, and Systems. Entities are unique "things" that are assigned groups of Components, which are then processed using Systems.
For example, one entity might have a Position
and Velocity
component, whereas another entity might have a Position
and UI
component. You might have a movement system that runs on all entities with a Position and Velocity component.
The ECS pattern encourages clean, decoupled designs by forcing you to break up your app data and logic into its core components. It also helps make your code faster by optimizing memory access patterns and making parallelism easier.
Concepts
Bevy ECS is Bevy's implementation of the ECS pattern. Unlike other Rust ECS implementations, which often require complex lifetimes, traits, builder patterns, or macros, Bevy ECS uses normal Rust data types for all of these concepts:
Components
Components are normal Rust structs. They are data stored in a World
and specific instances of Components correlate to Entities.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
Worlds
Entities, Components, and Resources are stored in a World
. Worlds, much like Rust std collections like HashSet and Vec, expose operations to insert, read, write, and remove the data they store.
use bevy_ecs::world::World;
let world = World::default();
Entities
Entities are unique identifiers that correlate to zero or more Components.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
let mut world = World::new();
let entity = world
.spawn((Position { x: 0.0, y: 0.0 }, Velocity { x: 1.0, y: 0.0 }))
.id();
let entity_ref = world.entity(entity);
let position = entity_ref.get::<Position>().unwrap();
let velocity = entity_ref.get::<Velocity>().unwrap();
Systems
Systems are normal Rust functions. Thanks to the Rust type system, Bevy ECS can use function parameter types to determine what data needs to be sent to the system. It also uses this "data access" information to determine what Systems can run in parallel with each other.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
fn print_position(query: Query<(Entity, &Position)>) {
for (entity, position) in &query {
println!("Entity {:?} is at position: x {}, y {}", entity, position.x, position.y);
}
}
Resources
Apps often require unique resources, such as asset collections, renderers, audio servers, time, etc. Bevy ECS makes this pattern a first class citizen. Resource
is a special kind of component that does not belong to any entity. Instead, it is identified uniquely by its type:
use bevy_ecs::prelude::*;
#[derive(Resource, Default)]
struct Time {
seconds: f32,
}
let mut world = World::new();
world.insert_resource(Time::default());
let time = world.get_resource::<Time>().unwrap();
// You can also access resources from Systems
fn print_time(time: Res<Time>) {
println!("{}", time.seconds);
}
The resources.rs
example illustrates how to read and write a Counter resource from Systems.
Schedules
Schedules run a set of Systems according to some execution strategy. Systems can be added to any number of System Sets, which are used to control their scheduling metadata.
The built in "parallel executor" considers dependencies between systems and (by default) run as many of them in parallel as possible. This maximizes performance, while keeping the system execution safe. To control the system ordering, define explicit dependencies between systems and their sets.
Using Bevy ECS
Bevy ECS should feel very natural for those familiar with Rust syntax:
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
// This system moves each entity with a Position and Velocity component
fn movement(mut query: Query<(&mut Position, &Velocity)>) {
for (mut position, velocity) in &mut query {
position.x += velocity.x;
position.y += velocity.y;
}
}
fn main() {
// Create a new empty World to hold our Entities and Components
let mut world = World::new();
// Spawn an entity with Position and Velocity components
world.spawn((
Position { x: 0.0, y: 0.0 },
Velocity { x: 1.0, y: 0.0 },
));
// Create a new Schedule, which defines an execution strategy for Systems
let mut schedule = Schedule::default();
// Add our system to the schedule
schedule.add_systems(movement);
// Run the schedule once. If your app has a "loop", you would run this once per loop
schedule.run(&mut world);
}
Features
Query Filters
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Player;
#[derive(Component)]
struct Alive;
// Gets the Position component of all Entities with Player component and without the Alive
// component.
fn system(query: Query<&Position, (With<Player>, Without<Alive>)>) {
for position in &query {
}
}
Change Detection
Bevy ECS tracks all changes to Components and Resources.
Queries can filter for changed Components:
use bevy_ecs::prelude::*;
#[derive(Component)]
struct Position { x: f32, y: f32 }
#[derive(Component)]
struct Velocity { x: f32, y: f32 }
// Gets the Position component of all Entities whose Velocity has changed since the last run of the System
fn system_changed(query: Query<&Position, Changed<Velocity>>) {
for position in &query {
}
}
// Gets the Position component of all Entities that had a Velocity component added since the last run of the System
fn system_added(query: Query<&Position, Added<Velocity>>) {
for position in &query {
}
}
Resources also expose change state:
use bevy_ecs::prelude::*;
#[derive(Resource)]
struct Time(f32);
// Prints "time changed!" if the Time resource has changed since the last run of the System
fn system(time: Res<Time>) {
if time.is_changed() {
println!("time changed!");
}
}
The change_detection.rs
example shows how to query only for updated entities and react on changes in resources.
Component Storage
Bevy ECS supports multiple component storage types.
Components can be stored in:
- Tables: Fast and cache friendly iteration, but slower adding and removing of components. This is the default storage type.
- Sparse Sets: Fast adding and removing of components, but slower iteration.
Component storage types are configurable, and they default to table storage if the storage is not manually defined.
use bevy_ecs::prelude::*;
#[derive(Component)]
struct TableStoredComponent;
#[derive(Component)]
#[component(storage = "SparseSet")]
struct SparseStoredComponent;
Component Bundles
Define sets of Components that should be added together.
use bevy_ecs::prelude::*;
#[derive(Default, Component)]
struct Player;
#[derive(Default, Component)]
struct Position { x: f32, y: f32 }
#[derive(Default, Component)]
struct Velocity { x: f32, y: f32 }
#[derive(Bundle, Default)]
struct PlayerBundle {
player: Player,
position: Position,
velocity: Velocity,
}
let mut world = World::new();
// Spawn a new entity and insert the default PlayerBundle
world.spawn(PlayerBundle::default());
// Bundles play well with Rust's struct update syntax
world.spawn(PlayerBundle {
position: Position { x: 1.0, y: 1.0 },
..Default::default()
});
Events
Events offer a communication channel between one or more systems. Events can be sent using the system parameter EventWriter
and received with EventReader
.
use bevy_ecs::prelude::*;
#[derive(Event)]
struct MyEvent {
message: String,
}
fn writer(mut writer: EventWriter<MyEvent>) {
writer.send(MyEvent {
message: "hello!".to_string(),
});
}
fn reader(mut reader: EventReader<MyEvent>) {
for event in reader.iter() {
}
}
A minimal set up using events can be seen in events.rs
.