bevy/examples/game/breakout.rs
2020-08-12 09:13:10 -04:00

253 lines
8.3 KiB
Rust

use bevy::{
prelude::*,
render::pass::ClearColor,
sprite::collide_aabb::{collide, Collision},
};
/// An implementation of the classic game "Breakout"
fn main() {
App::build()
.add_default_plugins()
.add_resource(Scoreboard { score: 0 })
.add_resource(ClearColor(Color::rgb(0.7, 0.7, 0.7)))
.add_startup_system(setup.system())
.add_system(paddle_movement_system.system())
.add_system(ball_collision_system.system())
.add_system(ball_movement_system.system())
.add_system(scoreboard_system.system())
.run();
}
struct Paddle {
speed: f32,
}
struct Ball {
velocity: Vec3,
}
struct Scoreboard {
score: usize,
}
enum Collider {
Solid,
Scorable,
}
fn setup(
mut commands: Commands,
mut materials: ResMut<Assets<ColorMaterial>>,
asset_server: Res<AssetServer>,
) {
// Add the game's entities to our world
commands
// cameras
.spawn(Camera2dComponents::default())
.spawn(UiCameraComponents::default())
// paddle
.spawn(SpriteComponents {
material: materials.add(Color::rgb(0.2, 0.2, 0.8).into()),
translation: Translation(Vec3::new(0.0, -215.0, 0.0)),
sprite: Sprite {
size: Vec2::new(120.0, 30.0),
},
..Default::default()
})
.with(Paddle { speed: 500.0 })
.with(Collider::Solid)
// ball
.spawn(SpriteComponents {
material: materials.add(Color::rgb(0.8, 0.2, 0.2).into()),
translation: Translation(Vec3::new(0.0, -50.0, 1.0)),
sprite: Sprite {
size: Vec2::new(30.0, 30.0),
},
..Default::default()
})
.with(Ball {
velocity: 400.0 * Vec3::new(0.5, -0.5, 0.0).normalize(),
})
// scoreboard
.spawn(TextComponents {
text: Text {
font: asset_server.load("assets/fonts/FiraSans-Bold.ttf").unwrap(),
value: "Score:".to_string(),
style: TextStyle {
color: Color::rgb(0.2, 0.2, 0.8).into(),
font_size: 40.0,
},
},
style: Style {
position_type: PositionType::Absolute,
position: Rect {
top: Val::Px(5.0),
left: Val::Px(5.0),
..Default::default()
},
..Default::default()
},
..Default::default()
});
// Add walls
let wall_material = materials.add(Color::rgb(0.5, 0.5, 0.5).into());
let wall_thickness = 10.0;
let bounds = Vec2::new(900.0, 600.0);
commands
// left
.spawn(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(-bounds.x() / 2.0, 0.0, 0.0)),
sprite: Sprite {
size: Vec2::new(wall_thickness, bounds.y() + wall_thickness),
},
..Default::default()
})
.with(Collider::Solid)
// right
.spawn(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(bounds.x() / 2.0, 0.0, 0.0)),
sprite: Sprite {
size: Vec2::new(wall_thickness, bounds.y() + wall_thickness),
},
..Default::default()
})
.with(Collider::Solid)
// bottom
.spawn(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(0.0, -bounds.y() / 2.0, 0.0)),
sprite: Sprite {
size: Vec2::new(bounds.x() + wall_thickness, wall_thickness),
},
..Default::default()
})
.with(Collider::Solid)
// top
.spawn(SpriteComponents {
material: wall_material,
translation: Translation(Vec3::new(0.0, bounds.y() / 2.0, 0.0)),
sprite: Sprite {
size: Vec2::new(bounds.x() + wall_thickness, wall_thickness),
},
..Default::default()
})
.with(Collider::Solid);
// Add bricks
let brick_rows = 4;
let brick_columns = 5;
let brick_spacing = 20.0;
let brick_size = Vec2::new(150.0, 30.0);
let bricks_width = brick_columns as f32 * (brick_size.x() + brick_spacing) - brick_spacing;
// center the bricks and move them up a bit
let bricks_offset = Vec3::new(-(bricks_width - brick_size.x()) / 2.0, 100.0, 0.0);
for row in 0..brick_rows {
let y_position = row as f32 * (brick_size.y() + brick_spacing);
for column in 0..brick_columns {
let brick_position = Vec3::new(
column as f32 * (brick_size.x() + brick_spacing),
y_position,
0.0,
) + bricks_offset;
commands
// brick
.spawn(SpriteComponents {
material: materials.add(Color::rgb(0.2, 0.2, 0.8).into()),
sprite: Sprite { size: brick_size },
translation: Translation(brick_position),
..Default::default()
})
.with(Collider::Scorable);
}
}
}
fn paddle_movement_system(
time: Res<Time>,
keyboard_input: Res<Input<KeyCode>>,
mut query: Query<(&Paddle, &mut Translation)>,
) {
for (paddle, mut translation) in &mut query.iter() {
let mut direction = 0.0;
if keyboard_input.pressed(KeyCode::Left) {
direction -= 1.0;
}
if keyboard_input.pressed(KeyCode::Right) {
direction += 1.0;
}
*translation.0.x_mut() += time.delta_seconds * direction * paddle.speed;
// bound the paddle within the walls
*translation.0.x_mut() = f32::max(-380.0, f32::min(380.0, translation.0.x()));
}
}
fn ball_movement_system(time: Res<Time>, mut ball_query: Query<(&Ball, &mut Translation)>) {
// clamp the timestep to stop the ball from escaping when the game starts
let delta_seconds = f32::min(0.2, time.delta_seconds);
for (ball, mut translation) in &mut ball_query.iter() {
translation.0 += ball.velocity * delta_seconds;
}
}
fn scoreboard_system(scoreboard: Res<Scoreboard>, mut query: Query<&mut Text>) {
for mut text in &mut query.iter() {
text.value = format!("Score: {}", scoreboard.score);
}
}
fn ball_collision_system(
mut commands: Commands,
mut scoreboard: ResMut<Scoreboard>,
mut ball_query: Query<(&mut Ball, &Translation, &Sprite)>,
mut collider_query: Query<(Entity, &Collider, &Translation, &Sprite)>,
) {
for (mut ball, ball_translation, sprite) in &mut ball_query.iter() {
let ball_size = sprite.size;
let velocity = &mut ball.velocity;
// check collision with walls
for (collider_entity, _collider, translation, sprite) in &mut collider_query.iter() {
let collision = collide(ball_translation.0, ball_size, translation.0, sprite.size);
if let Some(collision) = collision {
// scorable colliders should be despawned and increment the scoreboard on collision
if let &Collider::Scorable = _collider {
scoreboard.score += 1;
commands.despawn(collider_entity);
}
// reflect the ball when it collides
let mut reflect_x = false;
let mut reflect_y = false;
// only reflect if the ball's velocity is going in the opposite direction of the collision
match collision {
Collision::Left => reflect_x = velocity.x() > 0.0,
Collision::Right => reflect_x = velocity.x() < 0.0,
Collision::Top => reflect_y = velocity.y() < 0.0,
Collision::Bottom => reflect_y = velocity.y() > 0.0,
}
// reflect velocity on the x-axis if we hit something on the x-axis
if reflect_x {
*velocity.x_mut() = -velocity.x();
}
// reflect velocity on the y-axis if we hit something on the y-axis
if reflect_y {
*velocity.y_mut() = -velocity.y();
}
break;
}
}
}
}