bevy/crates/bevy_ecs/src/query/fetch.rs
Boxy e528b63e11 merge matches_archetype and matches_table (#4807)
# Objective

the code in these fns are always identical so stop having two functions

## Solution

make them the same function

---

## Changelog

change `matches_archetype` and `matches_table` to `fn matches_component_set(&self, &SparseArray<ComponentId, usize>) -> bool` then do extremely boring updating of all `FetchState` impls

## Migration Guide

- move logic of `matches_archetype` and `matches_table` into `matches_component_set` in any manual `FetchState` impls
2022-05-30 16:41:32 +00:00

1757 lines
59 KiB
Rust

use crate::{
archetype::{Archetype, ArchetypeComponentId},
change_detection::Ticks,
component::{Component, ComponentId, ComponentStorage, ComponentTicks, StorageType},
entity::Entity,
query::{debug_checked_unreachable, Access, FilteredAccess},
storage::{ComponentSparseSet, Table, Tables},
world::{Mut, World},
};
use bevy_ecs_macros::all_tuples;
pub use bevy_ecs_macros::WorldQuery;
use bevy_ptr::{ThinSlicePtr, UnsafeCellDeref};
use std::{cell::UnsafeCell, marker::PhantomData};
/// Types that can be queried from a [`World`].
///
/// Notable types that implement this trait are `&T` and `&mut T` where `T` implements [`Component`],
/// allowing you to query for components immutably and mutably accordingly.
///
/// See [`Query`](crate::system::Query) for a primer on queries.
///
/// # Basic [`WorldQuery`]'s
///
/// Here is a small list of the most important world queries to know about where `C` stands for a
/// [`Component`] and `WQ` stands for a [`WorldQuery`]:
/// - `&C`: Queries immutably for the component `C`
/// - `&mut C`: Queries mutably for the component `C`
/// - `Option<WQ>`: Queries the inner [`WorldQuery`] `WQ` but instead of discarding the entity if the world
/// query fails it returns [`None`]. See [`Query`](crate::system::Query).
/// - `(WQ1, WQ2, ...)`: Queries all contained world queries allowing to query for more than one thing.
/// This is the `And` operator for filters. See [`Or`].
/// - `ChangeTrackers<C>`: See the docs of [`ChangeTrackers`].
/// - [`Entity`]: Using the entity type as a world query will grant access to the entity that is
/// being queried for. See [`Entity`].
///
/// Bevy also offers a few filters like [`Added`](crate::query::Added), [`Changed`](crate::query::Changed),
/// [`With`](crate::query::With), [`Without`](crate::query::Without) and [`Or`].
/// For more information on these consult the item's corresponding documentation.
///
/// [`Or`]: crate::query::Or
///
/// # Derive
///
/// This trait can be derived with the [`derive@super::WorldQuery`] macro.
///
/// You may want to implement a custom query with the derive macro for the following reasons:
/// - Named structs can be clearer and easier to use than complex query tuples. Access via struct
/// fields is more convenient than destructuring tuples or accessing them via `q.0, q.1, ...`
/// pattern and saves a lot of maintenance burden when adding or removing components.
/// - Nested queries enable the composition pattern and makes query types easier to re-use.
/// - You can bypass the limit of 15 components that exists for query tuples.
///
/// Implementing the trait manually can allow for a fundamentally new type of behaviour.
///
/// The derive macro implements [`WorldQuery`] for your type and declares an additional struct
/// which will be used as an item for query iterators. The implementation also generates two other
/// structs that implement [`Fetch`] and [`FetchState`] and are used as [`WorldQuery::Fetch`](WorldQueryGats::Fetch) and
/// [`WorldQuery::State`] associated types respectively.
///
/// The derive macro requires every struct field to implement the `WorldQuery` trait.
///
/// **Note:** currently, the macro only supports named structs.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(Component)]
/// struct Foo;
/// #[derive(Component)]
/// struct Bar;
///
/// #[derive(WorldQuery)]
/// struct MyQuery {
/// entity: Entity,
/// // We must explicitly list out all lifetimes, as we are defining a struct
/// foo: &'static Foo,
/// bar: Option<&'static Bar>,
/// }
///
/// fn my_system(query: Query<MyQuery>) {
/// for q in query.iter() {
/// // Note the type of the returned item.
/// let q: MyQueryItem<'_> = q;
/// q.foo;
/// }
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// ## Mutable queries
///
/// All queries that are derived with the `WorldQuery` macro provide only an immutable access by default.
/// If you need a mutable access to components, you can mark a struct with the `mutable` attribute.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(Component)]
/// struct Health(f32);
/// #[derive(Component)]
/// struct Buff(f32);
///
/// #[derive(WorldQuery)]
/// #[world_query(mutable)]
/// struct HealthQuery {
/// health: &'static mut Health,
/// buff: Option<&'static mut Buff>,
/// }
///
/// // This implementation is only available when iterating with `iter_mut`.
/// impl<'w> HealthQueryItem<'w> {
/// fn damage(&mut self, value: f32) {
/// self.health.0 -= value;
/// }
///
/// fn total(&self) -> f32 {
/// self.health.0 + self.buff.as_deref().map_or(0.0, |Buff(buff)| *buff)
/// }
/// }
///
/// // If you want to use it with `iter`, you'll need to write an additional implementation.
/// impl<'w> HealthQueryReadOnlyItem<'w> {
/// fn total(&self) -> f32 {
/// self.health.0 + self.buff.map_or(0.0, |Buff(buff)| *buff)
/// }
/// }
///
/// fn my_system(mut health_query: Query<HealthQuery>) {
/// // Iterator's item is `HealthQueryReadOnlyItem`.
/// for health in health_query.iter() {
/// println!("Total: {}", health.total());
/// }
/// // Iterator's item is `HealthQueryItem`.
/// for mut health in health_query.iter_mut() {
/// health.damage(1.0);
/// println!("Total (mut): {}", health.total());
/// }
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// **Note:** if you omit the `mutable` attribute for a query that doesn't implement
/// `ReadOnlyFetch`, compilation will fail. We insert static checks as in the example above for
/// every query component and a nested query.
/// (The checks neither affect the runtime, nor pollute your local namespace.)
///
/// ```compile_fail
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(Component)]
/// struct Foo;
/// #[derive(Component)]
/// struct Bar;
///
/// #[derive(WorldQuery)]
/// struct FooQuery {
/// foo: &'static Foo,
/// bar_query: BarQuery,
/// }
///
/// #[derive(WorldQuery)]
/// #[world_query(mutable)]
/// struct BarQuery {
/// bar: &'static mut Bar,
/// }
/// ```
///
/// ## Derives for items
///
/// If you want query items to have derivable traits, you can pass them with using
/// the `world_query(derive)` attribute. When the `WorldQuery` macro generates the structs
/// for query items, it doesn't automatically inherit derives of a query itself. Since derive macros
/// can't access information about other derives, they need to be passed manually with the
/// `world_query(derive)` attribute.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(Component, Debug)]
/// struct Foo;
///
/// #[derive(WorldQuery)]
/// #[world_query(mutable, derive(Debug))]
/// struct FooQuery {
/// foo: &'static Foo,
/// }
///
/// fn assert_debug<T: std::fmt::Debug>() {}
///
/// assert_debug::<FooQueryItem>();
/// assert_debug::<FooQueryReadOnlyItem>();
/// ```
///
/// ## Nested queries
///
/// Using nested queries enable the composition pattern, which makes it possible to re-use other
/// query types. All types that implement [`WorldQuery`] (including the ones that use this derive
/// macro) are supported.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(Component)]
/// struct Foo;
/// #[derive(Component)]
/// struct Bar;
/// #[derive(Component)]
/// struct OptionalFoo;
/// #[derive(Component)]
/// struct OptionalBar;
///
/// #[derive(WorldQuery)]
/// struct MyQuery {
/// foo: FooQuery,
/// bar: (&'static Bar, Option<&'static OptionalBar>)
/// }
///
/// #[derive(WorldQuery)]
/// struct FooQuery {
/// foo: &'static Foo,
/// optional_foo: Option<&'static OptionalFoo>,
/// }
///
/// // You can also compose derived queries with regular ones in tuples.
/// fn my_system(query: Query<(&Foo, MyQuery, FooQuery)>) {
/// for (foo, my_query, foo_query) in query.iter() {
/// foo; my_query; foo_query;
/// }
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// ## Ignored fields
///
/// The macro also supports `ignore` attribute for struct members. Fields marked with this attribute
/// must implement the `Default` trait.
///
/// This example demonstrates a query that would iterate over every entity.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::query::WorldQuery;
///
/// #[derive(WorldQuery, Debug)]
/// struct EmptyQuery {
/// empty: (),
/// }
///
/// fn my_system(query: Query<EmptyQuery>) {
/// for _ in query.iter() {}
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
///
/// ## Filters
///
/// Using [`derive@super::WorldQuery`] macro we can create our own query filters.
///
/// ```
/// # use bevy_ecs::prelude::*;
/// use bevy_ecs::{query::WorldQuery, component::Component};
///
/// #[derive(Component)]
/// struct Foo;
/// #[derive(Component)]
/// struct Bar;
/// #[derive(Component)]
/// struct Baz;
/// #[derive(Component)]
/// struct Qux;
///
/// #[derive(WorldQuery)]
/// struct MyFilter<T: Component, P: Component> {
/// _foo: With<Foo>,
/// _bar: With<Bar>,
/// _or: Or<(With<Baz>, Changed<Foo>, Added<Bar>)>,
/// _generic_tuple: (With<T>, Without<P>),
/// }
///
/// fn my_system(query: Query<Entity, MyFilter<Foo, Qux>>) {
/// for _ in query.iter() {}
/// }
///
/// # bevy_ecs::system::assert_is_system(my_system);
/// ```
pub trait WorldQuery: for<'w> WorldQueryGats<'w, _State = Self::State> {
type State: FetchState;
/// This function manually implements variance for the query items.
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self>;
}
/// The [`Fetch`] of a [`WorldQuery`], which declares which data it needs access to
pub type QueryFetch<'w, Q> = <Q as WorldQueryGats<'w>>::Fetch;
/// The item type returned when a [`WorldQuery`] is iterated over
pub type QueryItem<'w, Q> = <<Q as WorldQueryGats<'w>>::Fetch as Fetch<'w>>::Item;
/// The read-only [`Fetch`] of a [`WorldQuery`], which declares which data it needs access to when accessed immutably
pub type ROQueryFetch<'w, Q> = <Q as WorldQueryGats<'w>>::ReadOnlyFetch;
/// The read-only variant of the item type returned when a [`WorldQuery`] is iterated over immutably
pub type ROQueryItem<'w, Q> = <<Q as WorldQueryGats<'w>>::ReadOnlyFetch as Fetch<'w>>::Item;
/// A helper trait for [`WorldQuery`] that works around Rust's lack of Generic Associated Types
pub trait WorldQueryGats<'world> {
type Fetch: Fetch<'world, State = Self::_State>;
type ReadOnlyFetch: Fetch<'world, State = Self::_State> + ReadOnlyFetch;
type _State: FetchState;
}
/// Types that implement this trait are responsible for fetching query items from tables or
/// archetypes.
///
/// Every type that implements [`WorldQuery`] have their associated [`WorldQuery::Fetch`](WorldQueryGats::Fetch) and
/// [`WorldQuery::State`] types that are essential for fetching component data.
pub trait Fetch<'world>: Sized {
type Item;
type State: FetchState;
/// Creates a new instance of this fetch.
///
/// # Safety
///
/// `state` must have been initialized (via [`FetchState::init`]) using the same `world` passed
/// in to this function.
unsafe fn init(
world: &'world World,
state: &Self::State,
last_change_tick: u32,
change_tick: u32,
) -> Self;
/// Returns true if (and only if) every table of every archetype matched by this fetch contains
/// all of the matched components. This is used to select a more efficient "table iterator"
/// for "dense" queries. If this returns true, [`Fetch::set_table`] and [`Fetch::table_fetch`]
/// will be called for iterators. If this returns false, [`Fetch::set_archetype`] and
/// [`Fetch::archetype_fetch`] will be called for iterators.
const IS_DENSE: bool;
/// Returns true if (and only if) this Fetch relies strictly on archetypes to limit which
/// components are acessed by the Query.
///
/// This enables optimizations for [`crate::query::QueryIter`] that rely on knowing exactly how
/// many elements are being iterated (such as `Iterator::collect()`).
const IS_ARCHETYPAL: bool;
/// Adjusts internal state to account for the next [`Archetype`]. This will always be called on
/// archetypes that match this [`Fetch`].
///
/// # Safety
///
/// `archetype` and `tables` must be from the [`World`] [`Fetch::init`] was called on. `state` must
/// be the [`Self::State`] this was initialized with.
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'world Archetype,
tables: &'world Tables,
);
/// Adjusts internal state to account for the next [`Table`]. This will always be called on tables
/// that match this [`Fetch`].
///
/// # Safety
///
/// `table` must be from the [`World`] [`Fetch::init`] was called on. `state` must be the
/// [`Self::State`] this was initialized with.
unsafe fn set_table(&mut self, state: &Self::State, table: &'world Table);
/// Fetch [`Self::Item`] for the given `archetype_index` in the current [`Archetype`]. This must
/// always be called after [`Fetch::set_archetype`] with an `archetype_index` in the range of
/// the current [`Archetype`]
///
/// # Safety
/// Must always be called _after_ [`Fetch::set_archetype`]. `archetype_index` must be in the range
/// of the current archetype
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item;
/// Fetch [`Self::Item`] for the given `table_row` in the current [`Table`]. This must always be
/// called after [`Fetch::set_table`] with a `table_row` in the range of the current [`Table`]
///
/// # Safety
///
/// Must always be called _after_ [`Fetch::set_table`]. `table_row` must be in the range of the
/// current table
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item;
/// # Safety
///
/// Must always be called _after_ [`Fetch::set_archetype`]. `archetype_index` must be in the range
/// of the current archetype.
#[allow(unused_variables)]
#[inline]
unsafe fn archetype_filter_fetch(&mut self, archetype_index: usize) -> bool {
true
}
/// # Safety
///
/// Must always be called _after_ [`Fetch::set_table`]. `table_row` must be in the range of the
/// current table.
#[allow(unused_variables)]
#[inline]
unsafe fn table_filter_fetch(&mut self, table_row: usize) -> bool {
true
}
}
/// State used to construct a Fetch. This will be cached inside [`QueryState`](crate::query::QueryState),
/// so it is best to move as much data / computation here as possible to reduce the cost of
/// constructing Fetch.
///
/// # Safety
///
/// Implementor must ensure that [`FetchState::update_component_access`] and
/// [`FetchState::update_archetype_component_access`] exactly reflects the results of
/// [`FetchState::matches_component_set`], [`Fetch::archetype_fetch`], and
/// [`Fetch::table_fetch`].
pub unsafe trait FetchState: Send + Sync + Sized {
fn init(world: &mut World) -> Self;
fn update_component_access(&self, access: &mut FilteredAccess<ComponentId>);
fn update_archetype_component_access(
&self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
);
fn matches_component_set(&self, set_contains_id: &impl Fn(ComponentId) -> bool) -> bool;
}
/// A fetch that is read only.
///
/// # Safety
///
/// This must only be implemented for read-only fetches.
pub unsafe trait ReadOnlyFetch {}
impl WorldQuery for Entity {
type State = EntityState;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
item
}
}
/// The [`Fetch`] of [`Entity`].
#[doc(hidden)]
#[derive(Clone)]
pub struct EntityFetch<'w> {
entities: Option<ThinSlicePtr<'w, Entity>>,
}
/// SAFETY: access is read only
unsafe impl<'w> ReadOnlyFetch for EntityFetch<'w> {}
/// The [`FetchState`] of [`Entity`].
#[doc(hidden)]
pub struct EntityState;
// SAFETY: no component or archetype access
unsafe impl FetchState for EntityState {
fn init(_world: &mut World) -> Self {
Self
}
fn update_component_access(&self, _access: &mut FilteredAccess<ComponentId>) {}
fn update_archetype_component_access(
&self,
_archetype: &Archetype,
_access: &mut Access<ArchetypeComponentId>,
) {
}
#[inline]
fn matches_component_set(&self, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
true
}
}
impl<'w> WorldQueryGats<'w> for Entity {
type Fetch = EntityFetch<'w>;
type ReadOnlyFetch = EntityFetch<'w>;
type _State = EntityState;
}
impl<'w> Fetch<'w> for EntityFetch<'w> {
type Item = Entity;
type State = EntityState;
const IS_DENSE: bool = true;
const IS_ARCHETYPAL: bool = true;
unsafe fn init(
_world: &'w World,
_state: &EntityState,
_last_change_tick: u32,
_change_tick: u32,
) -> EntityFetch<'w> {
EntityFetch { entities: None }
}
#[inline]
unsafe fn set_archetype(
&mut self,
_state: &Self::State,
archetype: &'w Archetype,
_tables: &Tables,
) {
self.entities = Some(archetype.entities().into());
}
#[inline]
unsafe fn set_table(&mut self, _state: &Self::State, table: &'w Table) {
self.entities = Some(table.entities().into());
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
let entities = self.entities.unwrap_or_else(|| debug_checked_unreachable());
*entities.get(table_row)
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
let entities = self.entities.unwrap_or_else(|| debug_checked_unreachable());
*entities.get(archetype_index)
}
}
impl<T: Component> WorldQuery for &T {
type State = ReadState<T>;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
item
}
}
/// The [`FetchState`] of `&T`.
#[doc(hidden)]
pub struct ReadState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
// SAFETY: component access and archetype component access are properly updated to reflect that T is
// read
unsafe impl<T: Component> FetchState for ReadState<T> {
fn init(world: &mut World) -> Self {
let component_id = world.init_component::<T>();
ReadState {
component_id,
marker: PhantomData,
}
}
fn update_component_access(&self, access: &mut FilteredAccess<ComponentId>) {
assert!(
!access.access().has_write(self.component_id),
"&{} conflicts with a previous access in this query. Shared access cannot coincide with exclusive access.",
std::any::type_name::<T>(),
);
access.add_read(self.component_id);
}
fn update_archetype_component_access(
&self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
if let Some(archetype_component_id) =
archetype.get_archetype_component_id(self.component_id)
{
access.add_read(archetype_component_id);
}
}
fn matches_component_set(&self, set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
set_contains_id(self.component_id)
}
}
/// The [`Fetch`] of `&T`.
#[doc(hidden)]
pub struct ReadFetch<'w, T> {
// T::Storage = TableStorage
table_components: Option<ThinSlicePtr<'w, UnsafeCell<T>>>,
entity_table_rows: Option<ThinSlicePtr<'w, usize>>,
// T::Storage = SparseStorage
entities: Option<ThinSlicePtr<'w, Entity>>,
sparse_set: Option<&'w ComponentSparseSet>,
}
impl<T> Clone for ReadFetch<'_, T> {
fn clone(&self) -> Self {
Self {
table_components: self.table_components,
entity_table_rows: self.entity_table_rows,
entities: self.entities,
sparse_set: self.sparse_set,
}
}
}
/// SAFETY: access is read only
unsafe impl<'w, T: Component> ReadOnlyFetch for ReadFetch<'w, T> {}
impl<'w, T: Component> WorldQueryGats<'w> for &T {
type Fetch = ReadFetch<'w, T>;
type ReadOnlyFetch = ReadFetch<'w, T>;
type _State = ReadState<T>;
}
impl<'w, T: Component> Fetch<'w> for ReadFetch<'w, T> {
type Item = &'w T;
type State = ReadState<T>;
const IS_DENSE: bool = {
match T::Storage::STORAGE_TYPE {
StorageType::Table => true,
StorageType::SparseSet => false,
}
};
const IS_ARCHETYPAL: bool = true;
unsafe fn init(
world: &'w World,
state: &ReadState<T>,
_last_change_tick: u32,
_change_tick: u32,
) -> ReadFetch<'w, T> {
ReadFetch {
table_components: None,
entity_table_rows: None,
entities: None,
sparse_set: (T::Storage::STORAGE_TYPE == StorageType::SparseSet).then(|| {
world
.storages()
.sparse_sets
.get(state.component_id)
.unwrap()
}),
}
}
#[inline]
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'w Archetype,
tables: &'w Tables,
) {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
self.entity_table_rows = Some(archetype.entity_table_rows().into());
let column = tables[archetype.table_id()]
.get_column(state.component_id)
.unwrap();
self.table_components = Some(column.get_data_slice().into());
}
StorageType::SparseSet => self.entities = Some(archetype.entities().into()),
}
}
#[inline]
unsafe fn set_table(&mut self, state: &Self::State, table: &'w Table) {
self.table_components = Some(
table
.get_column(state.component_id)
.unwrap()
.get_data_slice()
.into(),
);
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
let (entity_table_rows, table_components) = self
.entity_table_rows
.zip(self.table_components)
.unwrap_or_else(|| debug_checked_unreachable());
let table_row = *entity_table_rows.get(archetype_index);
table_components.get(table_row).deref()
}
StorageType::SparseSet => {
let (entities, sparse_set) = self
.entities
.zip(self.sparse_set)
.unwrap_or_else(|| debug_checked_unreachable());
let entity = *entities.get(archetype_index);
sparse_set
.get(entity)
.unwrap_or_else(|| debug_checked_unreachable())
.deref::<T>()
}
}
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
let components = self
.table_components
.unwrap_or_else(|| debug_checked_unreachable());
components.get(table_row).deref()
}
}
impl<T: Component> WorldQuery for &mut T {
type State = WriteState<T>;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
item
}
}
/// The [`Fetch`] of `&mut T`.
#[doc(hidden)]
pub struct WriteFetch<'w, T> {
// T::Storage = TableStorage
table_components: Option<ThinSlicePtr<'w, UnsafeCell<T>>>,
table_ticks: Option<ThinSlicePtr<'w, UnsafeCell<ComponentTicks>>>,
entity_table_rows: Option<ThinSlicePtr<'w, usize>>,
// T::Storage = SparseStorage
entities: Option<ThinSlicePtr<'w, Entity>>,
sparse_set: Option<&'w ComponentSparseSet>,
last_change_tick: u32,
change_tick: u32,
}
impl<T> Clone for WriteFetch<'_, T> {
fn clone(&self) -> Self {
Self {
table_components: self.table_components,
table_ticks: self.table_ticks,
entities: self.entities,
entity_table_rows: self.entity_table_rows,
sparse_set: self.sparse_set,
last_change_tick: self.last_change_tick,
change_tick: self.change_tick,
}
}
}
/// The [`ReadOnlyFetch`] of `&mut T`.
pub struct ReadOnlyWriteFetch<'w, T> {
// T::Storage = TableStorage
table_components: Option<ThinSlicePtr<'w, UnsafeCell<T>>>,
entity_table_rows: Option<ThinSlicePtr<'w, usize>>,
// T::Storage = SparseStorage
entities: Option<ThinSlicePtr<'w, Entity>>,
sparse_set: Option<&'w ComponentSparseSet>,
}
/// SAFETY: access is read only
unsafe impl<'w, T: Component> ReadOnlyFetch for ReadOnlyWriteFetch<'w, T> {}
impl<T> Clone for ReadOnlyWriteFetch<'_, T> {
fn clone(&self) -> Self {
Self {
table_components: self.table_components,
entities: self.entities,
entity_table_rows: self.entity_table_rows,
sparse_set: self.sparse_set,
}
}
}
/// The [`FetchState`] of `&mut T`.
#[doc(hidden)]
pub struct WriteState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
// SAFETY: component access and archetype component access are properly updated to reflect that T is
// written
unsafe impl<T: Component> FetchState for WriteState<T> {
fn init(world: &mut World) -> Self {
let component_id = world.init_component::<T>();
WriteState {
component_id,
marker: PhantomData,
}
}
fn update_component_access(&self, access: &mut FilteredAccess<ComponentId>) {
assert!(
!access.access().has_read(self.component_id),
"&mut {} conflicts with a previous access in this query. Mutable component access must be unique.",
std::any::type_name::<T>(),
);
access.add_write(self.component_id);
}
fn update_archetype_component_access(
&self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
if let Some(archetype_component_id) =
archetype.get_archetype_component_id(self.component_id)
{
access.add_write(archetype_component_id);
}
}
fn matches_component_set(&self, set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
set_contains_id(self.component_id)
}
}
impl<'w, T: Component> WorldQueryGats<'w> for &mut T {
type Fetch = WriteFetch<'w, T>;
type ReadOnlyFetch = ReadOnlyWriteFetch<'w, T>;
type _State = WriteState<T>;
}
impl<'w, T: Component> Fetch<'w> for WriteFetch<'w, T> {
type Item = Mut<'w, T>;
type State = WriteState<T>;
const IS_DENSE: bool = {
match T::Storage::STORAGE_TYPE {
StorageType::Table => true,
StorageType::SparseSet => false,
}
};
const IS_ARCHETYPAL: bool = true;
unsafe fn init(
world: &'w World,
state: &WriteState<T>,
last_change_tick: u32,
change_tick: u32,
) -> Self {
Self {
table_components: None,
entities: None,
entity_table_rows: None,
sparse_set: (T::Storage::STORAGE_TYPE == StorageType::SparseSet).then(|| {
world
.storages()
.sparse_sets
.get(state.component_id)
.unwrap()
}),
table_ticks: None,
last_change_tick,
change_tick,
}
}
#[inline]
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'w Archetype,
tables: &'w Tables,
) {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
self.entity_table_rows = Some(archetype.entity_table_rows().into());
let column = tables[archetype.table_id()]
.get_column(state.component_id)
.unwrap();
self.table_components = Some(column.get_data_slice().into());
self.table_ticks = Some(column.get_ticks_slice().into());
}
StorageType::SparseSet => self.entities = Some(archetype.entities().into()),
}
}
#[inline]
unsafe fn set_table(&mut self, state: &Self::State, table: &'w Table) {
let column = table.get_column(state.component_id).unwrap();
self.table_components = Some(column.get_data_slice().into());
self.table_ticks = Some(column.get_ticks_slice().into());
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
let (entity_table_rows, (table_components, table_ticks)) = self
.entity_table_rows
.zip(self.table_components.zip(self.table_ticks))
.unwrap_or_else(|| debug_checked_unreachable());
let table_row = *entity_table_rows.get(archetype_index);
Mut {
value: table_components.get(table_row).deref_mut(),
ticks: Ticks {
component_ticks: table_ticks.get(table_row).deref_mut(),
change_tick: self.change_tick,
last_change_tick: self.last_change_tick,
},
}
}
StorageType::SparseSet => {
let (entities, sparse_set) = self
.entities
.zip(self.sparse_set)
.unwrap_or_else(|| debug_checked_unreachable());
let entity = *entities.get(archetype_index);
let (component, component_ticks) = sparse_set
.get_with_ticks(entity)
.unwrap_or_else(|| debug_checked_unreachable());
Mut {
value: component.assert_unique().deref_mut(),
ticks: Ticks {
component_ticks: component_ticks.deref_mut(),
change_tick: self.change_tick,
last_change_tick: self.last_change_tick,
},
}
}
}
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
let (table_components, table_ticks) = self
.table_components
.zip(self.table_ticks)
.unwrap_or_else(|| debug_checked_unreachable());
Mut {
value: table_components.get(table_row).deref_mut(),
ticks: Ticks {
component_ticks: table_ticks.get(table_row).deref_mut(),
change_tick: self.change_tick,
last_change_tick: self.last_change_tick,
},
}
}
}
impl<'w, T: Component> Fetch<'w> for ReadOnlyWriteFetch<'w, T> {
type Item = &'w T;
type State = WriteState<T>;
const IS_DENSE: bool = {
match T::Storage::STORAGE_TYPE {
StorageType::Table => true,
StorageType::SparseSet => false,
}
};
const IS_ARCHETYPAL: bool = true;
unsafe fn init(
world: &'w World,
state: &WriteState<T>,
_last_change_tick: u32,
_change_tick: u32,
) -> Self {
Self {
table_components: None,
entities: None,
entity_table_rows: None,
sparse_set: (T::Storage::STORAGE_TYPE == StorageType::SparseSet).then(|| {
world
.storages()
.sparse_sets
.get(state.component_id)
.unwrap()
}),
}
}
#[inline]
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'w Archetype,
tables: &'w Tables,
) {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
self.entity_table_rows = Some(archetype.entity_table_rows().into());
let column = tables[archetype.table_id()]
.get_column(state.component_id)
.unwrap();
self.table_components = Some(column.get_data_slice().into());
}
StorageType::SparseSet => self.entities = Some(archetype.entities().into()),
}
}
#[inline]
unsafe fn set_table(&mut self, state: &Self::State, table: &'w Table) {
self.table_components = Some(
table
.get_column(state.component_id)
.unwrap()
.get_data_slice()
.into(),
);
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
let (entity_table_rows, table_components) = self
.entity_table_rows
.zip(self.table_components)
.unwrap_or_else(|| debug_checked_unreachable());
let table_row = *entity_table_rows.get(archetype_index);
table_components.get(table_row).deref()
}
StorageType::SparseSet => {
let (entities, sparse_set) = self
.entities
.zip(self.sparse_set)
.unwrap_or_else(|| debug_checked_unreachable());
let entity = *entities.get(archetype_index);
sparse_set
.get(entity)
.unwrap_or_else(|| debug_checked_unreachable())
.deref::<T>()
}
}
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
let components = self
.table_components
.unwrap_or_else(|| debug_checked_unreachable());
components.get(table_row).deref()
}
}
impl<T: WorldQuery> WorldQuery for Option<T> {
type State = OptionState<T::State>;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
item.map(T::shrink)
}
}
/// The [`Fetch`] of `Option<T>`.
#[doc(hidden)]
#[derive(Clone)]
pub struct OptionFetch<T> {
fetch: T,
matches: bool,
}
/// SAFETY: [`OptionFetch`] is read only because `T` is read only
unsafe impl<T: ReadOnlyFetch> ReadOnlyFetch for OptionFetch<T> {}
/// The [`FetchState`] of `Option<T>`.
#[doc(hidden)]
pub struct OptionState<T: FetchState> {
state: T,
}
// SAFETY: component access and archetype component access are properly updated according to the
// internal Fetch
unsafe impl<T: FetchState> FetchState for OptionState<T> {
fn init(world: &mut World) -> Self {
Self {
state: T::init(world),
}
}
fn update_component_access(&self, access: &mut FilteredAccess<ComponentId>) {
// We don't want to add the `with`/`without` of `T` as `Option<T>` will match things regardless of
// `T`'s filters. for example `Query<(Option<&U>, &mut V)>` will match every entity with a `V` component
// regardless of whether it has a `U` component. If we dont do this the query will not conflict with
// `Query<&mut V, Without<U>>` which would be unsound.
let mut intermediate = access.clone();
self.state.update_component_access(&mut intermediate);
access.extend_access(&intermediate);
}
fn update_archetype_component_access(
&self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
if self
.state
.matches_component_set(&|id| archetype.contains(id))
{
self.state
.update_archetype_component_access(archetype, access);
}
}
fn matches_component_set(&self, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
true
}
}
impl<'w, T: WorldQueryGats<'w>> WorldQueryGats<'w> for Option<T> {
type Fetch = OptionFetch<T::Fetch>;
type ReadOnlyFetch = OptionFetch<T::ReadOnlyFetch>;
type _State = OptionState<T::_State>;
}
impl<'w, T: Fetch<'w>> Fetch<'w> for OptionFetch<T> {
type Item = Option<T::Item>;
type State = OptionState<T::State>;
const IS_DENSE: bool = T::IS_DENSE;
const IS_ARCHETYPAL: bool = T::IS_ARCHETYPAL;
unsafe fn init(
world: &'w World,
state: &OptionState<T::State>,
last_change_tick: u32,
change_tick: u32,
) -> Self {
Self {
fetch: T::init(world, &state.state, last_change_tick, change_tick),
matches: false,
}
}
#[inline]
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'w Archetype,
tables: &'w Tables,
) {
self.matches = state
.state
.matches_component_set(&|id| archetype.contains(id));
if self.matches {
self.fetch.set_archetype(&state.state, archetype, tables);
}
}
#[inline]
unsafe fn set_table(&mut self, state: &Self::State, table: &'w Table) {
self.matches = state
.state
.matches_component_set(&|id| table.has_column(id));
if self.matches {
self.fetch.set_table(&state.state, table);
}
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
if self.matches {
Some(self.fetch.archetype_fetch(archetype_index))
} else {
None
}
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
if self.matches {
Some(self.fetch.table_fetch(table_row))
} else {
None
}
}
}
/// [`WorldQuery`] that tracks changes and additions for component `T`.
///
/// Wraps a [`Component`] to track whether the component changed for the corresponding entities in
/// a query since the last time the system that includes these queries ran.
///
/// If you only care about entities that changed or that got added use the
/// [`Changed`](crate::query::Changed) and [`Added`](crate::query::Added) filters instead.
///
/// # Examples
///
/// ```
/// # use bevy_ecs::component::Component;
/// # use bevy_ecs::query::ChangeTrackers;
/// # use bevy_ecs::system::IntoSystem;
/// # use bevy_ecs::system::Query;
/// #
/// # #[derive(Component, Debug)]
/// # struct Name {};
/// # #[derive(Component)]
/// # struct Transform {};
/// #
/// fn print_moving_objects_system(query: Query<(&Name, ChangeTrackers<Transform>)>) {
/// for (name, tracker) in query.iter() {
/// if tracker.is_changed() {
/// println!("Entity moved: {:?}", name);
/// } else {
/// println!("Entity stood still: {:?}", name);
/// }
/// }
/// }
/// # bevy_ecs::system::assert_is_system(print_moving_objects_system);
/// ```
#[derive(Clone)]
pub struct ChangeTrackers<T: Component> {
pub(crate) component_ticks: ComponentTicks,
pub(crate) last_change_tick: u32,
pub(crate) change_tick: u32,
marker: PhantomData<T>,
}
impl<T: Component> std::fmt::Debug for ChangeTrackers<T> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("ChangeTrackers")
.field("component_ticks", &self.component_ticks)
.field("last_change_tick", &self.last_change_tick)
.field("change_tick", &self.change_tick)
.finish()
}
}
impl<T: Component> ChangeTrackers<T> {
/// Returns true if this component has been added since the last execution of this system.
pub fn is_added(&self) -> bool {
self.component_ticks
.is_added(self.last_change_tick, self.change_tick)
}
/// Returns true if this component has been changed since the last execution of this system.
pub fn is_changed(&self) -> bool {
self.component_ticks
.is_changed(self.last_change_tick, self.change_tick)
}
}
impl<T: Component> WorldQuery for ChangeTrackers<T> {
type State = ChangeTrackersState<T>;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
item
}
}
/// The [`FetchState`] of [`ChangeTrackers`].
#[doc(hidden)]
pub struct ChangeTrackersState<T> {
component_id: ComponentId,
marker: PhantomData<T>,
}
// SAFETY: component access and archetype component access are properly updated to reflect that T is
// read
unsafe impl<T: Component> FetchState for ChangeTrackersState<T> {
fn init(world: &mut World) -> Self {
let component_id = world.init_component::<T>();
Self {
component_id,
marker: PhantomData,
}
}
fn update_component_access(&self, access: &mut FilteredAccess<ComponentId>) {
assert!(
!access.access().has_write(self.component_id),
"ChangeTrackers<{}> conflicts with a previous access in this query. Shared access cannot coincide with exclusive access.",
std::any::type_name::<T>()
);
access.add_read(self.component_id);
}
fn update_archetype_component_access(
&self,
archetype: &Archetype,
access: &mut Access<ArchetypeComponentId>,
) {
if let Some(archetype_component_id) =
archetype.get_archetype_component_id(self.component_id)
{
access.add_read(archetype_component_id);
}
}
fn matches_component_set(&self, set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
set_contains_id(self.component_id)
}
}
/// The [`Fetch`] of [`ChangeTrackers`].
#[doc(hidden)]
pub struct ChangeTrackersFetch<'w, T> {
// T::Storage = TableStorage
table_ticks: Option<ThinSlicePtr<'w, UnsafeCell<ComponentTicks>>>,
entity_table_rows: Option<ThinSlicePtr<'w, usize>>,
// T::Storage = SparseStorage
entities: Option<ThinSlicePtr<'w, Entity>>,
sparse_set: Option<&'w ComponentSparseSet>,
marker: PhantomData<T>,
last_change_tick: u32,
change_tick: u32,
}
impl<T> Clone for ChangeTrackersFetch<'_, T> {
fn clone(&self) -> Self {
Self {
table_ticks: self.table_ticks,
entity_table_rows: self.entity_table_rows,
entities: self.entities,
sparse_set: self.sparse_set,
marker: self.marker,
last_change_tick: self.last_change_tick,
change_tick: self.change_tick,
}
}
}
/// SAFETY: access is read only
unsafe impl<'w, T: Component> ReadOnlyFetch for ChangeTrackersFetch<'w, T> {}
impl<'w, T: Component> WorldQueryGats<'w> for ChangeTrackers<T> {
type Fetch = ChangeTrackersFetch<'w, T>;
type ReadOnlyFetch = ChangeTrackersFetch<'w, T>;
type _State = ChangeTrackersState<T>;
}
impl<'w, T: Component> Fetch<'w> for ChangeTrackersFetch<'w, T> {
type Item = ChangeTrackers<T>;
type State = ChangeTrackersState<T>;
const IS_DENSE: bool = {
match T::Storage::STORAGE_TYPE {
StorageType::Table => true,
StorageType::SparseSet => false,
}
};
const IS_ARCHETYPAL: bool = true;
unsafe fn init(
world: &'w World,
state: &ChangeTrackersState<T>,
last_change_tick: u32,
change_tick: u32,
) -> ChangeTrackersFetch<'w, T> {
ChangeTrackersFetch {
table_ticks: None,
entities: None,
entity_table_rows: None,
sparse_set: (T::Storage::STORAGE_TYPE == StorageType::SparseSet).then(|| {
world
.storages()
.sparse_sets
.get(state.component_id)
.unwrap()
}),
marker: PhantomData,
last_change_tick,
change_tick,
}
}
#[inline]
unsafe fn set_archetype(
&mut self,
state: &Self::State,
archetype: &'w Archetype,
tables: &'w Tables,
) {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
self.entity_table_rows = Some(archetype.entity_table_rows().into());
let column = tables[archetype.table_id()]
.get_column(state.component_id)
.unwrap();
self.table_ticks = Some(column.get_ticks_slice().into());
}
StorageType::SparseSet => self.entities = Some(archetype.entities().into()),
}
}
#[inline]
unsafe fn set_table(&mut self, state: &Self::State, table: &'w Table) {
self.table_ticks = Some(
table
.get_column(state.component_id)
.unwrap()
.get_ticks_slice()
.into(),
);
}
#[inline]
unsafe fn archetype_fetch(&mut self, archetype_index: usize) -> Self::Item {
match T::Storage::STORAGE_TYPE {
StorageType::Table => {
let entity_table_rows = self
.entity_table_rows
.unwrap_or_else(|| debug_checked_unreachable());
let table_row = *entity_table_rows.get(archetype_index);
ChangeTrackers {
component_ticks: {
let table_ticks = self
.table_ticks
.unwrap_or_else(|| debug_checked_unreachable());
table_ticks.get(table_row).read()
},
marker: PhantomData,
last_change_tick: self.last_change_tick,
change_tick: self.change_tick,
}
}
StorageType::SparseSet => {
let entities = self.entities.unwrap_or_else(|| debug_checked_unreachable());
let entity = *entities.get(archetype_index);
ChangeTrackers {
component_ticks: self
.sparse_set
.unwrap_or_else(|| debug_checked_unreachable())
.get_ticks(entity)
.map(|ticks| &*ticks.get())
.cloned()
.unwrap_or_else(|| debug_checked_unreachable()),
marker: PhantomData,
last_change_tick: self.last_change_tick,
change_tick: self.change_tick,
}
}
}
}
#[inline]
unsafe fn table_fetch(&mut self, table_row: usize) -> Self::Item {
ChangeTrackers {
component_ticks: {
let table_ticks = self
.table_ticks
.unwrap_or_else(|| debug_checked_unreachable());
table_ticks.get(table_row).read()
},
marker: PhantomData,
last_change_tick: self.last_change_tick,
change_tick: self.change_tick,
}
}
}
macro_rules! impl_tuple_fetch {
($(($name: ident, $state: ident)),*) => {
#[allow(unused_variables)]
#[allow(non_snake_case)]
impl<'w, $($name: WorldQueryGats<'w>),*> WorldQueryGats<'w> for ($($name,)*) {
type Fetch = ($($name::Fetch,)*);
type ReadOnlyFetch = ($($name::ReadOnlyFetch,)*);
type _State = ($($name::_State,)*);
}
#[allow(non_snake_case)]
impl<'w, $($name: Fetch<'w>),*> Fetch<'w> for ($($name,)*) {
type Item = ($($name::Item,)*);
type State = ($($name::State,)*);
#[allow(clippy::unused_unit)]
unsafe fn init(_world: &'w World, state: &Self::State, _last_change_tick: u32, _change_tick: u32) -> Self {
let ($($name,)*) = state;
($($name::init(_world, $name, _last_change_tick, _change_tick),)*)
}
const IS_DENSE: bool = true $(&& $name::IS_DENSE)*;
const IS_ARCHETYPAL: bool = true $(&& $name::IS_ARCHETYPAL)*;
#[inline]
unsafe fn set_archetype(&mut self, _state: &Self::State, _archetype: &'w Archetype, _tables: &'w Tables) {
let ($($name,)*) = self;
let ($($state,)*) = _state;
$($name.set_archetype($state, _archetype, _tables);)*
}
#[inline]
unsafe fn set_table(&mut self, _state: &Self::State, _table: &'w Table) {
let ($($name,)*) = self;
let ($($state,)*) = _state;
$($name.set_table($state, _table);)*
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn table_fetch(&mut self, _table_row: usize) -> Self::Item {
let ($($name,)*) = self;
($($name.table_fetch(_table_row),)*)
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn archetype_fetch(&mut self, _archetype_index: usize) -> Self::Item {
let ($($name,)*) = self;
($($name.archetype_fetch(_archetype_index),)*)
}
#[allow(unused_variables)]
#[inline]
unsafe fn table_filter_fetch(&mut self, table_row: usize) -> bool {
let ($($name,)*) = self;
true $(&& $name.table_filter_fetch(table_row))*
}
#[allow(unused_variables)]
#[inline]
unsafe fn archetype_filter_fetch(&mut self, archetype_index: usize) -> bool {
let ($($name,)*) = self;
true $(&& $name.archetype_filter_fetch(archetype_index))*
}
}
// SAFETY: update_component_access and update_archetype_component_access are called for each item in the tuple
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
unsafe impl<$($name: FetchState),*> FetchState for ($($name,)*) {
fn init(_world: &mut World) -> Self {
($($name::init(_world),)*)
}
fn update_component_access(&self, _access: &mut FilteredAccess<ComponentId>) {
let ($($name,)*) = self;
$($name.update_component_access(_access);)*
}
fn update_archetype_component_access(&self, _archetype: &Archetype, _access: &mut Access<ArchetypeComponentId>) {
let ($($name,)*) = self;
$($name.update_archetype_component_access(_archetype, _access);)*
}
fn matches_component_set(&self, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
let ($($name,)*) = self;
true $(&& $name.matches_component_set(_set_contains_id))*
}
}
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
impl<$($name: WorldQuery),*> WorldQuery for ($($name,)*) {
type State = ($($name::State,)*);
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
let ($($name,)*) = item;
($(
$name::shrink($name),
)*)
}
}
/// SAFETY: each item in the tuple is read only
unsafe impl<'w, $($name: ReadOnlyFetch),*> ReadOnlyFetch for ($($name,)*) {}
};
}
/// The `AnyOf` query parameter fetches entities with any of the component types included in T.
///
/// `Query<AnyOf<(&A, &B, &mut C)>>` is equivalent to `Query<(Option<&A>, Option<&B>, Option<&mut C>), (Or(With<A>, With<B>, With<C>)>`.
/// Each of the components in `T` is returned as an `Option`, as with `Option<A>` queries.
/// Entities are guaranteed to have at least one of the components in `T`.
pub struct AnyOf<T>(T);
macro_rules! impl_anytuple_fetch {
($(($name: ident, $state: ident)),*) => {
#[allow(unused_variables)]
#[allow(non_snake_case)]
impl<'w, $($name: WorldQueryGats<'w>),*> WorldQueryGats<'w> for AnyOf<($($name,)*)> {
type Fetch = AnyOf<($(($name::Fetch, bool),)*)>;
type ReadOnlyFetch = AnyOf<($(($name::ReadOnlyFetch, bool),)*)>;
type _State = AnyOf<($($name::_State,)*)>;
}
#[allow(non_snake_case)]
impl<'w, $($name: Fetch<'w>),*> Fetch<'w> for AnyOf<($(($name, bool),)*)> {
type Item = ($(Option<$name::Item>,)*);
type State = AnyOf<($($name::State,)*)>;
#[allow(clippy::unused_unit)]
unsafe fn init(_world: &'w World, state: &Self::State, _last_change_tick: u32, _change_tick: u32) -> Self {
let ($($name,)*) = &state.0;
AnyOf(($(($name::init(_world, $name, _last_change_tick, _change_tick), false),)*))
}
const IS_DENSE: bool = true $(&& $name::IS_DENSE)*;
const IS_ARCHETYPAL: bool = true $(&& $name::IS_ARCHETYPAL)*;
#[inline]
unsafe fn set_archetype(&mut self, _state: &Self::State, _archetype: &'w Archetype, _tables: &'w Tables) {
let ($($name,)*) = &mut self.0;
let ($($state,)*) = &_state.0;
$(
$name.1 = $state.matches_component_set(&|id| _archetype.contains(id));
if $name.1 {
$name.0.set_archetype($state, _archetype, _tables);
}
)*
}
#[inline]
unsafe fn set_table(&mut self, _state: &Self::State, _table: &'w Table) {
let ($($name,)*) = &mut self.0;
let ($($state,)*) = &_state.0;
$(
$name.1 = $state.matches_component_set(&|id| _table.has_column(id));
if $name.1 {
$name.0.set_table($state, _table);
}
)*
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn table_fetch(&mut self, _table_row: usize) -> Self::Item {
let ($($name,)*) = &mut self.0;
($(
$name.1.then(|| $name.0.table_fetch(_table_row)),
)*)
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn archetype_fetch(&mut self, _archetype_index: usize) -> Self::Item {
let ($($name,)*) = &mut self.0;
($(
$name.1.then(|| $name.0.archetype_fetch(_archetype_index)),
)*)
}
}
// SAFETY: update_component_access and update_archetype_component_access are called for each item in the tuple
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
unsafe impl<$($name: FetchState),*> FetchState for AnyOf<($($name,)*)> {
fn init(_world: &mut World) -> Self {
AnyOf(($($name::init(_world),)*))
}
fn update_component_access(&self, _access: &mut FilteredAccess<ComponentId>) {
let ($($name,)*) = &self.0;
// We do not unconditionally add `$name`'s `with`/`without` accesses to `_access`
// as this would be unsound. For example the following two queries should conflict:
// - Query<(AnyOf<(&A, ())>, &mut B)>
// - Query<&mut B, Without<A>>
//
// If we were to unconditionally add `$name`'s `with`/`without` accesses then `AnyOf<(&A, ())>`
// would have a `With<A>` access which is incorrect as this `WorldQuery` will match entities that
// do not have the `A` component. This is the same logic as the `Or<...>: WorldQuery` impl.
//
// The correct thing to do here is to only add a `with`/`without` access to `_access` if all
// `$name` params have that `with`/`without` access. More jargony put- we add the intersection
// of all `with`/`without` accesses of the `$name` params to `_access`.
let mut _intersected_access = _access.clone();
let mut _not_first = false;
$(
if _not_first {
let mut intermediate = _access.clone();
$name.update_component_access(&mut intermediate);
_intersected_access.extend_intersect_filter(&intermediate);
_intersected_access.extend_access(&intermediate);
} else {
$name.update_component_access(&mut _intersected_access);
_not_first = true;
}
)*
*_access = _intersected_access;
}
fn update_archetype_component_access(&self, _archetype: &Archetype, _access: &mut Access<ArchetypeComponentId>) {
let ($($name,)*) = &self.0;
$(
if $name.matches_component_set(&|id| _archetype.contains(id)) {
$name.update_archetype_component_access(_archetype, _access);
}
)*
}
fn matches_component_set(&self, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
let ($($name,)*) = &self.0;
false $(|| $name.matches_component_set(_set_contains_id))*
}
}
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
impl<$($name: WorldQuery),*> WorldQuery for AnyOf<($($name,)*)> {
type State = AnyOf<($($name::State,)*)>;
fn shrink<'wlong: 'wshort, 'wshort>(item: QueryItem<'wlong, Self>) -> QueryItem<'wshort, Self> {
let ($($name,)*) = item;
($(
$name.map($name::shrink),
)*)
}
}
/// SAFETY: each item in the tuple is read only
unsafe impl<'w, $($name: ReadOnlyFetch),*> ReadOnlyFetch for AnyOf<($(($name, bool),)*)> {}
};
}
all_tuples!(impl_tuple_fetch, 0, 15, F, S);
all_tuples!(impl_anytuple_fetch, 0, 15, F, S);
/// [`Fetch`] that does not actually fetch anything
///
/// Mostly useful when something is generic over the Fetch and you don't want to fetch as you will discard the result
pub struct NopFetch<State> {
state: PhantomData<State>,
}
impl<'w, State: FetchState> Fetch<'w> for NopFetch<State> {
type Item = ();
type State = State;
const IS_DENSE: bool = true;
const IS_ARCHETYPAL: bool = true;
#[inline(always)]
unsafe fn init(
_world: &'w World,
_state: &State,
_last_change_tick: u32,
_change_tick: u32,
) -> Self {
Self { state: PhantomData }
}
#[inline(always)]
unsafe fn set_archetype(
&mut self,
_state: &Self::State,
_archetype: &Archetype,
_tables: &Tables,
) {
}
#[inline(always)]
unsafe fn set_table(&mut self, _state: &Self::State, _table: &Table) {}
#[inline(always)]
unsafe fn archetype_fetch(&mut self, _archetype_index: usize) -> Self::Item {}
#[inline(always)]
unsafe fn table_fetch(&mut self, _table_row: usize) -> Self::Item {}
}