bevy/crates/bevy_reflect/src/utility.rs
Patrick Walton 5f1dd3918b
Rework animation to be done in two phases. (#11707)
# Objective

Bevy's animation system currently does tree traversals based on `Name`
that aren't necessary. Not only do they require in unsafe code because
tree traversals are awkward with parallelism, but they are also somewhat
slow, brittle, and complex, which manifested itself as way too many
queries in #11670.

# Solution

Divide animation into two phases: animation *advancement* and animation
*evaluation*, which run after one another. *Advancement* operates on the
`AnimationPlayer` and sets the current animation time to match the game
time. *Evaluation* operates on all animation bones in the scene in
parallel and sets the transforms and/or morph weights based on the time
and the clip.

To do this, we introduce a new component, `AnimationTarget`, which the
asset loader places on every bone. It contains the ID of the entity
containing the `AnimationPlayer`, as well as a UUID that identifies
which bone in the animation the target corresponds to. In the case of
glTF, the UUID is derived from the full path name to the bone. The rule
that `AnimationTarget`s are descendants of the entity containing
`AnimationPlayer` is now just a convention, not a requirement; this
allows us to eliminate the unsafe code.

# Migration guide

* `AnimationClip` now uses UUIDs instead of hierarchical paths based on
the `Name` component to refer to bones. This has several consequences:
- A new component, `AnimationTarget`, should be placed on each bone that
you wish to animate, in order to specify its UUID and the associated
`AnimationPlayer`. The glTF loader automatically creates these
components as necessary, so most uses of glTF rigs shouldn't need to
change.
- Moving a bone around the tree, or renaming it, no longer prevents an
`AnimationPlayer` from affecting it.
- Dynamically changing the `AnimationPlayer` component will likely
require manual updating of the `AnimationTarget` components.
* Entities with `AnimationPlayer` components may now possess descendants
that also have `AnimationPlayer` components. They may not, however,
animate the same bones.
* As they aren't specific to `TypeId`s,
`bevy_reflect::utility::NoOpTypeIdHash` and
`bevy_reflect::utility::NoOpTypeIdHasher` have been renamed to
`bevy_reflect::utility::NoOpHash` and
`bevy_reflect::utility::NoOpHasher` respectively.
2024-02-19 14:59:54 +00:00

258 lines
9.2 KiB
Rust

//! Helpers for working with Bevy reflection.
use crate::TypeInfo;
use bevy_utils::{FixedState, NoOpHash, TypeIdMap};
use std::{
any::{Any, TypeId},
hash::BuildHasher,
sync::{OnceLock, PoisonError, RwLock},
};
/// A type that can be stored in a ([`Non`])[`GenericTypeCell`].
///
/// [`Non`]: NonGenericTypeCell
pub trait TypedProperty: sealed::Sealed {
type Stored: 'static;
}
/// Used to store a [`String`] in a [`GenericTypePathCell`] as part of a [`TypePath`] implementation.
///
/// [`TypePath`]: crate::TypePath
pub struct TypePathComponent;
mod sealed {
use super::{TypeInfo, TypePathComponent, TypedProperty};
pub trait Sealed {}
impl Sealed for TypeInfo {}
impl Sealed for TypePathComponent {}
impl TypedProperty for TypeInfo {
type Stored = Self;
}
impl TypedProperty for TypePathComponent {
type Stored = String;
}
}
/// A container for [`TypeInfo`] over non-generic types, allowing instances to be stored statically.
///
/// This is specifically meant for use with _non_-generic types. If your type _is_ generic,
/// then use [`GenericTypeCell`] instead. Otherwise, it will not take into account all
/// monomorphizations of your type.
///
/// Non-generic [`TypePath`]s should be trivially generated with string literals and [`concat!`].
///
/// ## Example
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, NamedField, Reflect, ReflectMut, ReflectOwned, ReflectRef, StructInfo, Typed, TypeInfo, TypePath};
/// use bevy_reflect::utility::NonGenericTypeInfoCell;
///
/// struct Foo {
/// bar: i32
/// }
///
/// impl Typed for Foo {
/// fn type_info() -> &'static TypeInfo {
/// static CELL: NonGenericTypeInfoCell = NonGenericTypeInfoCell::new();
/// CELL.get_or_set(|| {
/// let fields = [NamedField::new::<i32>("bar")];
/// let info = StructInfo::new::<Self>(&fields);
/// TypeInfo::Struct(info)
/// })
/// }
/// }
/// # impl TypePath for Foo {
/// # fn type_path() -> &'static str { todo!() }
/// # fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl Reflect for Foo {
/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// # fn as_any(&self) -> &dyn Any { todo!() }
/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// # fn apply(&mut self, value: &dyn Reflect) { todo!() }
/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// # fn clone_value(&self) -> Box<dyn Reflect> { todo!() }
/// # }
/// ```
///
/// [`TypePath`]: crate::TypePath
pub struct NonGenericTypeCell<T: TypedProperty>(OnceLock<T::Stored>);
/// See [`NonGenericTypeCell`].
pub type NonGenericTypeInfoCell = NonGenericTypeCell<TypeInfo>;
impl<T: TypedProperty> NonGenericTypeCell<T> {
/// Initialize a [`NonGenericTypeCell`] for non-generic types.
pub const fn new() -> Self {
Self(OnceLock::new())
}
/// Returns a reference to the [`TypedProperty`] stored in the cell.
///
/// If there is no entry found, a new one will be generated from the given function.
pub fn get_or_set<F>(&self, f: F) -> &T::Stored
where
F: FnOnce() -> T::Stored,
{
self.0.get_or_init(f)
}
}
/// A container for [`TypedProperty`] over generic types, allowing instances to be stored statically.
///
/// This is specifically meant for use with generic types. If your type isn't generic,
/// then use [`NonGenericTypeCell`] instead as it should be much more performant.
///
/// `#[derive(TypePath)]` and [`impl_type_path`] should always be used over [`GenericTypePathCell`]
/// where possible.
///
/// ## Examples
///
/// Implementing [`TypeInfo`] with generics.
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::{DynamicTypePath, Reflect, ReflectMut, ReflectOwned, ReflectRef, TupleStructInfo, Typed, TypeInfo, TypePath, UnnamedField};
/// use bevy_reflect::utility::GenericTypeInfoCell;
///
/// struct Foo<T>(T);
///
/// impl<T: Reflect + TypePath> Typed for Foo<T> {
/// fn type_info() -> &'static TypeInfo {
/// static CELL: GenericTypeInfoCell = GenericTypeInfoCell::new();
/// CELL.get_or_insert::<Self, _>(|| {
/// let fields = [UnnamedField::new::<T>(0)];
/// let info = TupleStructInfo::new::<Self>(&fields);
/// TypeInfo::TupleStruct(info)
/// })
/// }
/// }
/// # impl<T: TypePath> TypePath for Foo<T> {
/// # fn type_path() -> &'static str { todo!() }
/// # fn short_type_path() -> &'static str { todo!() }
/// # }
/// # impl<T: Reflect + TypePath> Reflect for Foo<T> {
/// # fn get_represented_type_info(&self) -> Option<&'static TypeInfo> { todo!() }
/// # fn into_any(self: Box<Self>) -> Box<dyn Any> { todo!() }
/// # fn as_any(&self) -> &dyn Any { todo!() }
/// # fn as_any_mut(&mut self) -> &mut dyn Any { todo!() }
/// # fn into_reflect(self: Box<Self>) -> Box<dyn Reflect> { todo!() }
/// # fn as_reflect(&self) -> &dyn Reflect { todo!() }
/// # fn as_reflect_mut(&mut self) -> &mut dyn Reflect { todo!() }
/// # fn apply(&mut self, value: &dyn Reflect) { todo!() }
/// # fn set(&mut self, value: Box<dyn Reflect>) -> Result<(), Box<dyn Reflect>> { todo!() }
/// # fn reflect_ref(&self) -> ReflectRef { todo!() }
/// # fn reflect_mut(&mut self) -> ReflectMut { todo!() }
/// # fn reflect_owned(self: Box<Self>) -> ReflectOwned { todo!() }
/// # fn clone_value(&self) -> Box<dyn Reflect> { todo!() }
/// # }
/// ```
///
/// Implementing [`TypePath`] with generics.
///
/// ```
/// # use std::any::Any;
/// # use bevy_reflect::TypePath;
/// use bevy_reflect::utility::GenericTypePathCell;
///
/// struct Foo<T>(T);
///
/// impl<T: TypePath> TypePath for Foo<T> {
/// fn type_path() -> &'static str {
/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
/// CELL.get_or_insert::<Self, _>(|| format!("my_crate::foo::Foo<{}>", T::type_path()))
/// }
///
/// fn short_type_path() -> &'static str {
/// static CELL: GenericTypePathCell = GenericTypePathCell::new();
/// CELL.get_or_insert::<Self, _>(|| format!("Foo<{}>", T::short_type_path()))
/// }
///
/// fn type_ident() -> Option<&'static str> {
/// Some("Foo")
/// }
///
/// fn module_path() -> Option<&'static str> {
/// Some("my_crate::foo")
/// }
///
/// fn crate_name() -> Option<&'static str> {
/// Some("my_crate")
/// }
/// }
/// ```
/// [`impl_type_path`]: crate::impl_type_path
/// [`TypePath`]: crate::TypePath
pub struct GenericTypeCell<T: TypedProperty>(RwLock<TypeIdMap<&'static T::Stored>>);
/// See [`GenericTypeCell`].
pub type GenericTypeInfoCell = GenericTypeCell<TypeInfo>;
/// See [`GenericTypeCell`].
pub type GenericTypePathCell = GenericTypeCell<TypePathComponent>;
impl<T: TypedProperty> GenericTypeCell<T> {
/// Initialize a [`GenericTypeCell`] for generic types.
pub const fn new() -> Self {
Self(RwLock::new(TypeIdMap::with_hasher(NoOpHash)))
}
/// Returns a reference to the [`TypedProperty`] stored in the cell.
///
/// This method will then return the correct [`TypedProperty`] reference for the given type `T`.
/// If there is no entry found, a new one will be generated from the given function.
pub fn get_or_insert<G, F>(&self, f: F) -> &T::Stored
where
G: Any + ?Sized,
F: FnOnce() -> T::Stored,
{
let type_id = TypeId::of::<G>();
// Put in a separate scope, so `mapping` is dropped before `f`,
// since `f` might want to call `get_or_insert` recursively
// and we don't want a deadlock!
{
let mapping = self.0.read().unwrap_or_else(PoisonError::into_inner);
if let Some(info) = mapping.get(&type_id) {
return info;
}
}
let value = f();
let mut mapping = self.0.write().unwrap_or_else(PoisonError::into_inner);
mapping
.entry(type_id)
.insert({
// We leak here in order to obtain a `&'static` reference.
// Otherwise, we won't be able to return a reference due to the `RwLock`.
// This should be okay, though, since we expect it to remain statically
// available over the course of the application.
Box::leak(Box::new(value))
})
.get()
}
}
/// Deterministic fixed state hasher to be used by implementors of [`Reflect::reflect_hash`].
///
/// Hashes should be deterministic across processes so hashes can be used as
/// checksums for saved scenes, rollback snapshots etc. This function returns
/// such a hasher.
///
/// [`Reflect::reflect_hash`]: crate::Reflect
#[inline]
pub fn reflect_hasher() -> bevy_utils::AHasher {
FixedState.build_hasher()
}