mirror of
https://github.com/bevyengine/bevy
synced 2024-11-14 00:47:32 +00:00
29508f065f
# Objective - Fixes #15236 ## Solution - Use bevy_math::ops instead of std floating point operations. ## Testing - Did you test these changes? If so, how? Unit tests and `cargo run -p ci -- test` - How can other people (reviewers) test your changes? Is there anything specific they need to know? Execute `cargo run -p ci -- test` on Windows. - If relevant, what platforms did you test these changes on, and are there any important ones you can't test? Windows ## Migration Guide - Not a breaking change - Projects should use bevy math where applicable --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: IQuick 143 <IQuick143cz@gmail.com> Co-authored-by: Joona Aalto <jondolf.dev@gmail.com>
419 lines
16 KiB
Rust
419 lines
16 KiB
Rust
//! This example shows how to manually render 2d items using "mid level render apis" with a custom
|
|
//! pipeline for 2d meshes.
|
|
//! It doesn't use the [`Material2d`] abstraction, but changes the vertex buffer to include vertex color.
|
|
//! Check out the "mesh2d" example for simpler / higher level 2d meshes.
|
|
//!
|
|
//! [`Material2d`]: bevy::sprite::Material2d
|
|
|
|
use bevy::{
|
|
color::palettes::basic::YELLOW,
|
|
core_pipeline::core_2d::{Transparent2d, CORE_2D_DEPTH_FORMAT},
|
|
ecs::entity::EntityHashMap,
|
|
math::{ops, FloatOrd},
|
|
prelude::*,
|
|
render::{
|
|
mesh::{Indices, MeshVertexAttribute, RenderMesh},
|
|
render_asset::{RenderAssetUsages, RenderAssets},
|
|
render_phase::{
|
|
AddRenderCommand, DrawFunctions, PhaseItemExtraIndex, SetItemPipeline,
|
|
ViewSortedRenderPhases,
|
|
},
|
|
render_resource::{
|
|
BlendState, ColorTargetState, ColorWrites, CompareFunction, DepthBiasState,
|
|
DepthStencilState, Face, FragmentState, FrontFace, MultisampleState, PipelineCache,
|
|
PolygonMode, PrimitiveState, PrimitiveTopology, RenderPipelineDescriptor,
|
|
SpecializedRenderPipeline, SpecializedRenderPipelines, StencilFaceState, StencilState,
|
|
TextureFormat, VertexBufferLayout, VertexFormat, VertexState, VertexStepMode,
|
|
},
|
|
texture::BevyDefault,
|
|
view::{ExtractedView, ViewTarget, VisibleEntities},
|
|
Extract, Render, RenderApp, RenderSet,
|
|
},
|
|
sprite::{
|
|
extract_mesh2d, DrawMesh2d, Material2dBindGroupId, Mesh2dHandle, Mesh2dPipeline,
|
|
Mesh2dPipelineKey, Mesh2dTransforms, MeshFlags, RenderMesh2dInstance, SetMesh2dBindGroup,
|
|
SetMesh2dViewBindGroup, WithMesh2d,
|
|
},
|
|
};
|
|
use std::f32::consts::PI;
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins((DefaultPlugins, ColoredMesh2dPlugin))
|
|
.add_systems(Startup, star)
|
|
.run();
|
|
}
|
|
|
|
fn star(
|
|
mut commands: Commands,
|
|
// We will add a new Mesh for the star being created
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
) {
|
|
// Let's define the mesh for the object we want to draw: a nice star.
|
|
// We will specify here what kind of topology is used to define the mesh,
|
|
// that is, how triangles are built from the vertices. We will use a
|
|
// triangle list, meaning that each vertex of the triangle has to be
|
|
// specified. We set `RenderAssetUsages::RENDER_WORLD`, meaning this mesh
|
|
// will not be accessible in future frames from the `meshes` resource, in
|
|
// order to save on memory once it has been uploaded to the GPU.
|
|
let mut star = Mesh::new(
|
|
PrimitiveTopology::TriangleList,
|
|
RenderAssetUsages::RENDER_WORLD,
|
|
);
|
|
|
|
// Vertices need to have a position attribute. We will use the following
|
|
// vertices (I hope you can spot the star in the schema).
|
|
//
|
|
// 1
|
|
//
|
|
// 10 2
|
|
// 9 0 3
|
|
// 8 4
|
|
// 6
|
|
// 7 5
|
|
//
|
|
// These vertices are specified in 3D space.
|
|
let mut v_pos = vec![[0.0, 0.0, 0.0]];
|
|
for i in 0..10 {
|
|
// The angle between each vertex is 1/10 of a full rotation.
|
|
let a = i as f32 * PI / 5.0;
|
|
// The radius of inner vertices (even indices) is 100. For outer vertices (odd indices) it's 200.
|
|
let r = (1 - i % 2) as f32 * 100.0 + 100.0;
|
|
// Add the vertex position.
|
|
v_pos.push([r * ops::sin(a), r * ops::cos(a), 0.0]);
|
|
}
|
|
// Set the position attribute
|
|
star.insert_attribute(Mesh::ATTRIBUTE_POSITION, v_pos);
|
|
// And a RGB color attribute as well
|
|
let mut v_color: Vec<u32> = vec![LinearRgba::BLACK.as_u32()];
|
|
v_color.extend_from_slice(&[LinearRgba::from(YELLOW).as_u32(); 10]);
|
|
star.insert_attribute(
|
|
MeshVertexAttribute::new("Vertex_Color", 1, VertexFormat::Uint32),
|
|
v_color,
|
|
);
|
|
|
|
// Now, we specify the indices of the vertex that are going to compose the
|
|
// triangles in our star. Vertices in triangles have to be specified in CCW
|
|
// winding (that will be the front face, colored). Since we are using
|
|
// triangle list, we will specify each triangle as 3 vertices
|
|
// First triangle: 0, 2, 1
|
|
// Second triangle: 0, 3, 2
|
|
// Third triangle: 0, 4, 3
|
|
// etc
|
|
// Last triangle: 0, 1, 10
|
|
let mut indices = vec![0, 1, 10];
|
|
for i in 2..=10 {
|
|
indices.extend_from_slice(&[0, i, i - 1]);
|
|
}
|
|
star.insert_indices(Indices::U32(indices));
|
|
|
|
// We can now spawn the entities for the star and the camera
|
|
commands.spawn((
|
|
// We use a marker component to identify the custom colored meshes
|
|
ColoredMesh2d,
|
|
// The `Handle<Mesh>` needs to be wrapped in a `Mesh2dHandle` to use 2d rendering instead of 3d
|
|
Mesh2dHandle(meshes.add(star)),
|
|
// This bundle's components are needed for something to be rendered
|
|
SpatialBundle::INHERITED_IDENTITY,
|
|
));
|
|
|
|
// Spawn the camera
|
|
commands.spawn(Camera2dBundle::default());
|
|
}
|
|
|
|
/// A marker component for colored 2d meshes
|
|
#[derive(Component, Default)]
|
|
pub struct ColoredMesh2d;
|
|
|
|
/// Custom pipeline for 2d meshes with vertex colors
|
|
#[derive(Resource)]
|
|
pub struct ColoredMesh2dPipeline {
|
|
/// this pipeline wraps the standard [`Mesh2dPipeline`]
|
|
mesh2d_pipeline: Mesh2dPipeline,
|
|
}
|
|
|
|
impl FromWorld for ColoredMesh2dPipeline {
|
|
fn from_world(world: &mut World) -> Self {
|
|
Self {
|
|
mesh2d_pipeline: Mesh2dPipeline::from_world(world),
|
|
}
|
|
}
|
|
}
|
|
|
|
// We implement `SpecializedPipeline` to customize the default rendering from `Mesh2dPipeline`
|
|
impl SpecializedRenderPipeline for ColoredMesh2dPipeline {
|
|
type Key = Mesh2dPipelineKey;
|
|
|
|
fn specialize(&self, key: Self::Key) -> RenderPipelineDescriptor {
|
|
// Customize how to store the meshes' vertex attributes in the vertex buffer
|
|
// Our meshes only have position and color
|
|
let formats = vec![
|
|
// Position
|
|
VertexFormat::Float32x3,
|
|
// Color
|
|
VertexFormat::Uint32,
|
|
];
|
|
|
|
let vertex_layout =
|
|
VertexBufferLayout::from_vertex_formats(VertexStepMode::Vertex, formats);
|
|
|
|
let format = match key.contains(Mesh2dPipelineKey::HDR) {
|
|
true => ViewTarget::TEXTURE_FORMAT_HDR,
|
|
false => TextureFormat::bevy_default(),
|
|
};
|
|
|
|
RenderPipelineDescriptor {
|
|
vertex: VertexState {
|
|
// Use our custom shader
|
|
shader: COLORED_MESH2D_SHADER_HANDLE,
|
|
entry_point: "vertex".into(),
|
|
shader_defs: vec![],
|
|
// Use our custom vertex buffer
|
|
buffers: vec![vertex_layout],
|
|
},
|
|
fragment: Some(FragmentState {
|
|
// Use our custom shader
|
|
shader: COLORED_MESH2D_SHADER_HANDLE,
|
|
shader_defs: vec![],
|
|
entry_point: "fragment".into(),
|
|
targets: vec![Some(ColorTargetState {
|
|
format,
|
|
blend: Some(BlendState::ALPHA_BLENDING),
|
|
write_mask: ColorWrites::ALL,
|
|
})],
|
|
}),
|
|
// Use the two standard uniforms for 2d meshes
|
|
layout: vec![
|
|
// Bind group 0 is the view uniform
|
|
self.mesh2d_pipeline.view_layout.clone(),
|
|
// Bind group 1 is the mesh uniform
|
|
self.mesh2d_pipeline.mesh_layout.clone(),
|
|
],
|
|
push_constant_ranges: vec![],
|
|
primitive: PrimitiveState {
|
|
front_face: FrontFace::Ccw,
|
|
cull_mode: Some(Face::Back),
|
|
unclipped_depth: false,
|
|
polygon_mode: PolygonMode::Fill,
|
|
conservative: false,
|
|
topology: key.primitive_topology(),
|
|
strip_index_format: None,
|
|
},
|
|
depth_stencil: Some(DepthStencilState {
|
|
format: CORE_2D_DEPTH_FORMAT,
|
|
depth_write_enabled: false,
|
|
depth_compare: CompareFunction::GreaterEqual,
|
|
stencil: StencilState {
|
|
front: StencilFaceState::IGNORE,
|
|
back: StencilFaceState::IGNORE,
|
|
read_mask: 0,
|
|
write_mask: 0,
|
|
},
|
|
bias: DepthBiasState {
|
|
constant: 0,
|
|
slope_scale: 0.0,
|
|
clamp: 0.0,
|
|
},
|
|
}),
|
|
multisample: MultisampleState {
|
|
count: key.msaa_samples(),
|
|
mask: !0,
|
|
alpha_to_coverage_enabled: false,
|
|
},
|
|
label: Some("colored_mesh2d_pipeline".into()),
|
|
}
|
|
}
|
|
}
|
|
|
|
// This specifies how to render a colored 2d mesh
|
|
type DrawColoredMesh2d = (
|
|
// Set the pipeline
|
|
SetItemPipeline,
|
|
// Set the view uniform as bind group 0
|
|
SetMesh2dViewBindGroup<0>,
|
|
// Set the mesh uniform as bind group 1
|
|
SetMesh2dBindGroup<1>,
|
|
// Draw the mesh
|
|
DrawMesh2d,
|
|
);
|
|
|
|
// The custom shader can be inline like here, included from another file at build time
|
|
// using `include_str!()`, or loaded like any other asset with `asset_server.load()`.
|
|
const COLORED_MESH2D_SHADER: &str = r"
|
|
// Import the standard 2d mesh uniforms and set their bind groups
|
|
#import bevy_sprite::mesh2d_functions
|
|
|
|
// The structure of the vertex buffer is as specified in `specialize()`
|
|
struct Vertex {
|
|
@builtin(instance_index) instance_index: u32,
|
|
@location(0) position: vec3<f32>,
|
|
@location(1) color: u32,
|
|
};
|
|
|
|
struct VertexOutput {
|
|
// The vertex shader must set the on-screen position of the vertex
|
|
@builtin(position) clip_position: vec4<f32>,
|
|
// We pass the vertex color to the fragment shader in location 0
|
|
@location(0) color: vec4<f32>,
|
|
};
|
|
|
|
/// Entry point for the vertex shader
|
|
@vertex
|
|
fn vertex(vertex: Vertex) -> VertexOutput {
|
|
var out: VertexOutput;
|
|
// Project the world position of the mesh into screen position
|
|
let model = mesh2d_functions::get_world_from_local(vertex.instance_index);
|
|
out.clip_position = mesh2d_functions::mesh2d_position_local_to_clip(model, vec4<f32>(vertex.position, 1.0));
|
|
// Unpack the `u32` from the vertex buffer into the `vec4<f32>` used by the fragment shader
|
|
out.color = vec4<f32>((vec4<u32>(vertex.color) >> vec4<u32>(0u, 8u, 16u, 24u)) & vec4<u32>(255u)) / 255.0;
|
|
return out;
|
|
}
|
|
|
|
// The input of the fragment shader must correspond to the output of the vertex shader for all `location`s
|
|
struct FragmentInput {
|
|
// The color is interpolated between vertices by default
|
|
@location(0) color: vec4<f32>,
|
|
};
|
|
|
|
/// Entry point for the fragment shader
|
|
@fragment
|
|
fn fragment(in: FragmentInput) -> @location(0) vec4<f32> {
|
|
return in.color;
|
|
}
|
|
";
|
|
|
|
/// Plugin that renders [`ColoredMesh2d`]s
|
|
pub struct ColoredMesh2dPlugin;
|
|
|
|
/// Handle to the custom shader with a unique random ID
|
|
pub const COLORED_MESH2D_SHADER_HANDLE: Handle<Shader> =
|
|
Handle::weak_from_u128(13828845428412094821);
|
|
|
|
/// Our custom pipeline needs its own instance storage
|
|
#[derive(Resource, Deref, DerefMut, Default)]
|
|
pub struct RenderColoredMesh2dInstances(EntityHashMap<RenderMesh2dInstance>);
|
|
|
|
impl Plugin for ColoredMesh2dPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
// Load our custom shader
|
|
let mut shaders = app.world_mut().resource_mut::<Assets<Shader>>();
|
|
shaders.insert(
|
|
&COLORED_MESH2D_SHADER_HANDLE,
|
|
Shader::from_wgsl(COLORED_MESH2D_SHADER, file!()),
|
|
);
|
|
|
|
// Register our custom draw function, and add our render systems
|
|
app.get_sub_app_mut(RenderApp)
|
|
.unwrap()
|
|
.add_render_command::<Transparent2d, DrawColoredMesh2d>()
|
|
.init_resource::<SpecializedRenderPipelines<ColoredMesh2dPipeline>>()
|
|
.init_resource::<RenderColoredMesh2dInstances>()
|
|
.add_systems(
|
|
ExtractSchedule,
|
|
extract_colored_mesh2d.after(extract_mesh2d),
|
|
)
|
|
.add_systems(Render, queue_colored_mesh2d.in_set(RenderSet::QueueMeshes));
|
|
}
|
|
|
|
fn finish(&self, app: &mut App) {
|
|
// Register our custom pipeline
|
|
app.get_sub_app_mut(RenderApp)
|
|
.unwrap()
|
|
.init_resource::<ColoredMesh2dPipeline>();
|
|
}
|
|
}
|
|
|
|
/// Extract the [`ColoredMesh2d`] marker component into the render app
|
|
pub fn extract_colored_mesh2d(
|
|
mut commands: Commands,
|
|
mut previous_len: Local<usize>,
|
|
// When extracting, you must use `Extract` to mark the `SystemParam`s
|
|
// which should be taken from the main world.
|
|
query: Extract<
|
|
Query<(Entity, &ViewVisibility, &GlobalTransform, &Mesh2dHandle), With<ColoredMesh2d>>,
|
|
>,
|
|
mut render_mesh_instances: ResMut<RenderColoredMesh2dInstances>,
|
|
) {
|
|
let mut values = Vec::with_capacity(*previous_len);
|
|
for (entity, view_visibility, transform, handle) in &query {
|
|
if !view_visibility.get() {
|
|
continue;
|
|
}
|
|
|
|
let transforms = Mesh2dTransforms {
|
|
world_from_local: (&transform.affine()).into(),
|
|
flags: MeshFlags::empty().bits(),
|
|
};
|
|
|
|
values.push((entity, ColoredMesh2d));
|
|
render_mesh_instances.insert(
|
|
entity,
|
|
RenderMesh2dInstance {
|
|
mesh_asset_id: handle.0.id(),
|
|
transforms,
|
|
material_bind_group_id: Material2dBindGroupId::default(),
|
|
automatic_batching: false,
|
|
},
|
|
);
|
|
}
|
|
*previous_len = values.len();
|
|
commands.insert_or_spawn_batch(values);
|
|
}
|
|
|
|
/// Queue the 2d meshes marked with [`ColoredMesh2d`] using our custom pipeline and draw function
|
|
#[allow(clippy::too_many_arguments)]
|
|
pub fn queue_colored_mesh2d(
|
|
transparent_draw_functions: Res<DrawFunctions<Transparent2d>>,
|
|
colored_mesh2d_pipeline: Res<ColoredMesh2dPipeline>,
|
|
mut pipelines: ResMut<SpecializedRenderPipelines<ColoredMesh2dPipeline>>,
|
|
pipeline_cache: Res<PipelineCache>,
|
|
render_meshes: Res<RenderAssets<RenderMesh>>,
|
|
render_mesh_instances: Res<RenderColoredMesh2dInstances>,
|
|
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent2d>>,
|
|
views: Query<(Entity, &VisibleEntities, &ExtractedView, &Msaa)>,
|
|
) {
|
|
if render_mesh_instances.is_empty() {
|
|
return;
|
|
}
|
|
// Iterate each view (a camera is a view)
|
|
for (view_entity, visible_entities, view, msaa) in &views {
|
|
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
|
|
continue;
|
|
};
|
|
|
|
let draw_colored_mesh2d = transparent_draw_functions.read().id::<DrawColoredMesh2d>();
|
|
|
|
let mesh_key = Mesh2dPipelineKey::from_msaa_samples(msaa.samples())
|
|
| Mesh2dPipelineKey::from_hdr(view.hdr);
|
|
|
|
// Queue all entities visible to that view
|
|
for visible_entity in visible_entities.iter::<WithMesh2d>() {
|
|
if let Some(mesh_instance) = render_mesh_instances.get(visible_entity) {
|
|
let mesh2d_handle = mesh_instance.mesh_asset_id;
|
|
let mesh2d_transforms = &mesh_instance.transforms;
|
|
// Get our specialized pipeline
|
|
let mut mesh2d_key = mesh_key;
|
|
if let Some(mesh) = render_meshes.get(mesh2d_handle) {
|
|
mesh2d_key |=
|
|
Mesh2dPipelineKey::from_primitive_topology(mesh.primitive_topology());
|
|
}
|
|
|
|
let pipeline_id =
|
|
pipelines.specialize(&pipeline_cache, &colored_mesh2d_pipeline, mesh2d_key);
|
|
|
|
let mesh_z = mesh2d_transforms.world_from_local.translation.z;
|
|
transparent_phase.add(Transparent2d {
|
|
entity: *visible_entity,
|
|
draw_function: draw_colored_mesh2d,
|
|
pipeline: pipeline_id,
|
|
// The 2d render items are sorted according to their z value before rendering,
|
|
// in order to get correct transparency
|
|
sort_key: FloatOrd(mesh_z),
|
|
// This material is not batched
|
|
batch_range: 0..1,
|
|
extra_index: PhaseItemExtraIndex::NONE,
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|