bevy/crates/bevy_ecs/src/lib.rs
Joona Aalto ded5ce27ae
Fix bubbling of runtime requirements for #[require(...)] attribute (#16410)
# Objective

Fixes #16406.

Currently, the `#[require(...)]` attribute internally registers
component requirements using `register_required_components_manual`. This
is done recursively in a way where every requirement in the "inheritance
tree" is added into a flat `RequiredComponents` hash map with component
constructors and inheritance depths stored.

However, this does not consider runtime requirements: if a plugins has
already registered `C` as required by `B`, and a component `A` requires
`B` through the macro attribute, spawning an entity with `A` won't add
`C`. The `required_by` hash set for `C` doesn't have `A`, and the
`RequiredComponents` of `A` don't have `C`.

Intuitively, I would've thought that the macro attribute's requirements
were always added *before* runtime requirements, and in that case I
believe this shouldn't have been an issue. But the macro requirements
are based on `Component::register_required_components`, which in a lot
of cases (I think) is only called *after* the first time a bundle with
the component is inserted. So if a runtime requirement is defined
*before* this (as is often the case, during `Plugin::build`), the macro
may not take it into account.

## Solution

Register requirements inherited from the `required` component in
`register_required_components_manual_unchecked`.

## Testing

I added a test, essentially the same as in #16406, and it now passes. I
also ran some of the tests in #16409, and they seem to work as expected.
All the existing tests for required components pass.
2024-11-17 13:51:39 +00:00

2506 lines
76 KiB
Rust

// FIXME(11590): remove this once the lint is fixed
#![allow(unsafe_op_in_unsafe_fn)]
#![doc = include_str!("../README.md")]
// `rustdoc_internals` is needed for `#[doc(fake_variadics)]`
#![allow(internal_features)]
#![cfg_attr(any(docsrs, docsrs_dep), feature(doc_auto_cfg, rustdoc_internals))]
#![allow(unsafe_code)]
#![doc(
html_logo_url = "https://bevyengine.org/assets/icon.png",
html_favicon_url = "https://bevyengine.org/assets/icon.png"
)]
#[cfg(target_pointer_width = "16")]
compile_error!("bevy_ecs cannot safely compile for a 16-bit platform.");
extern crate alloc;
pub mod archetype;
pub mod batching;
pub mod bundle;
pub mod change_detection;
pub mod component;
pub mod entity;
pub mod event;
pub mod identifier;
pub mod intern;
pub mod label;
pub mod observer;
pub mod query;
#[cfg(feature = "bevy_reflect")]
pub mod reflect;
pub mod removal_detection;
pub mod schedule;
pub mod storage;
pub mod system;
pub mod traversal;
pub mod world;
pub use bevy_ptr as ptr;
/// The ECS prelude.
///
/// This includes the most common types in this crate, re-exported for your convenience.
pub mod prelude {
#[doc(hidden)]
pub use crate::{
bundle::Bundle,
change_detection::{DetectChanges, DetectChangesMut, Mut, Ref},
component::Component,
entity::{Entity, EntityMapper},
event::{Event, EventMutator, EventReader, EventWriter, Events},
observer::{Observer, Trigger},
query::{Added, AnyOf, Changed, Has, Or, QueryBuilder, QueryState, With, Without},
removal_detection::RemovedComponents,
schedule::{
apply_deferred, common_conditions::*, Condition, IntoSystemConfigs, IntoSystemSet,
IntoSystemSetConfigs, Schedule, Schedules, SystemSet,
},
system::{
Commands, Deferred, EntityCommand, EntityCommands, In, InMut, InRef, IntoSystem, Local,
NonSend, NonSendMut, ParallelCommands, ParamSet, Populated, Query, ReadOnlySystem, Res,
ResMut, Resource, Single, System, SystemIn, SystemInput, SystemParamBuilder,
SystemParamFunction, WithParamWarnPolicy,
},
world::{
Command, EntityMut, EntityRef, EntityWorldMut, FilteredResources, FilteredResourcesMut,
FromWorld, OnAdd, OnInsert, OnRemove, OnReplace, World,
},
};
#[doc(hidden)]
#[cfg(feature = "bevy_reflect")]
pub use crate::reflect::{
AppTypeRegistry, ReflectComponent, ReflectFromWorld, ReflectResource,
};
#[doc(hidden)]
#[cfg(feature = "reflect_functions")]
pub use crate::reflect::AppFunctionRegistry;
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs;
use crate::component::{RequiredComponents, RequiredComponentsError};
use crate::{
bundle::Bundle,
change_detection::Ref,
component::{Component, ComponentId},
entity::Entity,
prelude::Or,
query::{Added, Changed, FilteredAccess, QueryFilter, With, Without},
system::Resource,
world::{EntityMut, EntityRef, Mut, World},
};
use alloc::{sync::Arc, vec};
use bevy_ecs_macros::{VisitEntities, VisitEntitiesMut};
use bevy_tasks::{ComputeTaskPool, TaskPool};
use bevy_utils::HashSet;
use core::{
any::TypeId,
marker::PhantomData,
num::NonZero,
sync::atomic::{AtomicUsize, Ordering},
};
use std::sync::Mutex;
#[derive(Component, Resource, Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct A(usize);
#[derive(Component, Debug, PartialEq, Eq, Hash, Clone, Copy)]
struct B(usize);
#[derive(Component, Debug, PartialEq, Eq, Clone, Copy)]
struct C;
#[allow(dead_code)]
#[derive(Default)]
struct NonSendA(usize, PhantomData<*mut ()>);
#[derive(Component, Clone, Debug)]
struct DropCk(Arc<AtomicUsize>);
impl DropCk {
fn new_pair() -> (Self, Arc<AtomicUsize>) {
let atomic = Arc::new(AtomicUsize::new(0));
(DropCk(atomic.clone()), atomic)
}
}
impl Drop for DropCk {
fn drop(&mut self) {
self.0.as_ref().fetch_add(1, Ordering::Relaxed);
}
}
// TODO: The compiler says the Debug and Clone are removed during dead code analysis. Investigate.
#[allow(dead_code)]
#[derive(Component, Clone, Debug)]
#[component(storage = "SparseSet")]
struct DropCkSparse(DropCk);
#[derive(Component, Copy, Clone, PartialEq, Eq, Debug)]
#[component(storage = "Table")]
struct TableStored(&'static str);
#[derive(Component, Copy, Clone, PartialEq, Eq, Hash, Debug)]
#[component(storage = "SparseSet")]
struct SparseStored(u32);
#[test]
fn random_access() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(f).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 42);
}
#[test]
fn bundle_derive() {
let mut world = World::new();
#[derive(Bundle, PartialEq, Debug)]
struct FooBundle {
x: TableStored,
y: SparseStored,
}
let mut ids = Vec::new();
<FooBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.register_component::<TableStored>(),
world.register_component::<SparseStored>(),
]
);
let e1 = world
.spawn(FooBundle {
x: TableStored("abc"),
y: SparseStored(123),
})
.id();
let e2 = world
.spawn((TableStored("def"), SparseStored(456), A(1)))
.id();
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "abc");
assert_eq!(world.get::<SparseStored>(e1).unwrap().0, 123);
assert_eq!(world.get::<TableStored>(e2).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 456);
// test archetype get_mut()
world.get_mut::<TableStored>(e1).unwrap().0 = "xyz";
assert_eq!(world.get::<TableStored>(e1).unwrap().0, "xyz");
// test sparse set get_mut()
world.get_mut::<SparseStored>(e2).unwrap().0 = 42;
assert_eq!(world.get::<SparseStored>(e2).unwrap().0, 42);
assert_eq!(
world.entity_mut(e1).take::<FooBundle>().unwrap(),
FooBundle {
x: TableStored("xyz"),
y: SparseStored(123),
}
);
#[derive(Bundle, PartialEq, Debug)]
struct NestedBundle {
a: A,
foo: FooBundle,
b: B,
}
let mut ids = Vec::new();
<NestedBundle as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(
ids,
&[
world.register_component::<A>(),
world.register_component::<TableStored>(),
world.register_component::<SparseStored>(),
world.register_component::<B>(),
]
);
let e3 = world
.spawn(NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
})
.id();
assert_eq!(world.get::<TableStored>(e3).unwrap().0, "ghi");
assert_eq!(world.get::<SparseStored>(e3).unwrap().0, 789);
assert_eq!(world.get::<A>(e3).unwrap().0, 1);
assert_eq!(world.get::<B>(e3).unwrap().0, 2);
assert_eq!(
world.entity_mut(e3).take::<NestedBundle>().unwrap(),
NestedBundle {
a: A(1),
foo: FooBundle {
x: TableStored("ghi"),
y: SparseStored(789),
},
b: B(2),
}
);
#[derive(Default, Component, PartialEq, Debug)]
struct Ignored;
#[derive(Bundle, PartialEq, Debug)]
struct BundleWithIgnored {
c: C,
#[bundle(ignore)]
ignored: Ignored,
}
let mut ids = Vec::new();
<BundleWithIgnored as Bundle>::component_ids(
&mut world.components,
&mut world.storages,
&mut |id| {
ids.push(id);
},
);
assert_eq!(ids, &[world.register_component::<C>(),]);
let e4 = world
.spawn(BundleWithIgnored {
c: C,
ignored: Ignored,
})
.id();
assert_eq!(world.get::<C>(e4).unwrap(), &C);
assert_eq!(world.get::<Ignored>(e4), None);
assert_eq!(
world.entity_mut(e4).take::<BundleWithIgnored>().unwrap(),
BundleWithIgnored {
c: C,
ignored: Ignored,
}
);
}
#[test]
fn despawn_table_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<A>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<A>(f).unwrap().0, 456);
}
#[test]
fn despawn_mixed_storage() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), SparseStored(123))).id();
let f = world.spawn((TableStored("def"), SparseStored(456))).id();
assert_eq!(world.entities.len(), 2);
assert!(world.despawn(e));
assert_eq!(world.entities.len(), 1);
assert!(world.get::<TableStored>(e).is_none());
assert!(world.get::<SparseStored>(e).is_none());
assert_eq!(world.get::<TableStored>(f).unwrap().0, "def");
assert_eq!(world.get::<SparseStored>(f).unwrap().0, 456);
}
#[test]
fn query_all() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let ents = world
.query::<(Entity, &A, &TableStored)>()
.iter(&world)
.map(|(e, &i, &s)| (e, i, s))
.collect::<Vec<_>>();
assert_eq!(
ents,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_all_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
let mut results = Vec::new();
world
.query::<(Entity, &A, &TableStored)>()
.iter(&world)
.for_each(|(e, &i, &s)| results.push((e, i, s)));
assert_eq!(
results,
&[
(e, A(123), TableStored("abc")),
(f, A(456), TableStored("def"))
]
);
}
#[test]
fn query_single_component() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &A)>()
.iter(&world)
.map(|(e, &i)| (e, i))
.collect::<HashSet<_>>();
assert!(ents.contains(&(e, A(123))));
assert!(ents.contains(&(f, A(456))));
}
#[test]
fn stateful_query_handles_new_archetype() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let mut query = world.query::<(Entity, &A)>();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123))]);
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = query.iter(&world).map(|(e, &i)| (e, i)).collect::<Vec<_>>();
assert_eq!(ents, &[(e, A(123)), (f, A(456))]);
}
#[test]
fn query_single_component_for_each() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let mut results = HashSet::new();
world
.query::<(Entity, &A)>()
.iter(&world)
.for_each(|(e, &i)| {
results.insert((e, i));
});
assert!(results.contains(&(e, A(123))));
assert!(results.contains(&(f, A(456))));
}
#[test]
fn par_for_each_dense() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(A(1)).id();
let e2 = world.spawn(A(2)).id();
let e3 = world.spawn(A(3)).id();
let e4 = world.spawn((A(4), B(1))).id();
let e5 = world.spawn((A(5), B(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &A)>()
.par_iter(&world)
.for_each(|(e, &A(i))| {
results.lock().unwrap().push((e, i));
});
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn par_for_each_sparse() {
ComputeTaskPool::get_or_init(TaskPool::default);
let mut world = World::new();
let e1 = world.spawn(SparseStored(1)).id();
let e2 = world.spawn(SparseStored(2)).id();
let e3 = world.spawn(SparseStored(3)).id();
let e4 = world.spawn((SparseStored(4), A(1))).id();
let e5 = world.spawn((SparseStored(5), A(1))).id();
let results = Arc::new(Mutex::new(Vec::new()));
world
.query::<(Entity, &SparseStored)>()
.par_iter(&world)
.for_each(|(e, &SparseStored(i))| results.lock().unwrap().push((e, i)));
results.lock().unwrap().sort();
assert_eq!(
&*results.lock().unwrap(),
&[(e1, 1), (e2, 2), (e3, 3), (e4, 4), (e5, 5)]
);
}
#[test]
fn query_missing_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
world.spawn((TableStored("def"), A(456)));
assert!(world.query::<(&B, &A)>().iter(&world).next().is_none());
}
#[test]
fn query_sparse_component() {
let mut world = World::new();
world.spawn((TableStored("abc"), A(123)));
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
let ents = world
.query::<(Entity, &B)>()
.iter(&world)
.map(|(e, &b)| (e, b))
.collect::<Vec<_>>();
assert_eq!(ents, &[(f, B(1))]);
}
#[test]
fn query_filter_with() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_for_each() {
let mut world = World::new();
world.spawn((A(123), B(1)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<B>>()
.iter(&world)
.for_each(|i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, With<SparseStored>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(123)]);
}
#[test]
fn query_filter_with_sparse_for_each() {
let mut world = World::new();
world.spawn((A(123), SparseStored(321)));
world.spawn(A(456));
let mut results = Vec::new();
world
.query_filtered::<&A, With<SparseStored>>()
.iter(&world)
.for_each(|i| results.push(*i));
assert_eq!(results, vec![A(123)]);
}
#[test]
fn query_filter_without() {
let mut world = World::new();
world.spawn((A(123), B(321)));
world.spawn(A(456));
let result = world
.query_filtered::<&A, Without<B>>()
.iter(&world)
.cloned()
.collect::<Vec<_>>();
assert_eq!(result, vec![A(456)]);
}
#[test]
fn query_optional_component_table() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456), B(1))).id();
// this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&B>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<HashSet<_>>();
assert!(ents.contains(&(e, None, A(123))));
assert!(ents.contains(&(f, Some(B(1)), A(456))));
}
#[test]
fn query_optional_component_sparse() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world
.spawn((TableStored("def"), A(456), SparseStored(1)))
.id();
// this should be skipped
// world.spawn(SparseStored(1));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<HashSet<_>>();
assert_eq!(
ents,
HashSet::from([(e, None, A(123)), (f, Some(SparseStored(1)), A(456))])
);
}
#[test]
fn query_optional_component_sparse_no_match() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
let f = world.spawn((TableStored("def"), A(456))).id();
// // this should be skipped
world.spawn(TableStored("abc"));
let ents = world
.query::<(Entity, Option<&SparseStored>, &A)>()
.iter(&world)
.map(|(e, b, &i)| (e, b.copied(), i))
.collect::<Vec<_>>();
assert_eq!(ents, &[(e, None, A(123)), (f, None, A(456))]);
}
#[test]
fn add_remove_components() {
let mut world = World::new();
let e1 = world.spawn((A(1), B(3), TableStored("abc"))).id();
let e2 = world.spawn((A(2), B(4), TableStored("xyz"))).id();
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<HashSet<_>>(),
HashSet::from([(e1, A(1), B(3)), (e2, A(2), B(4))])
);
assert_eq!(world.entity_mut(e1).take::<A>(), Some(A(1)));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<Vec<_>>(),
&[(e2, A(2), B(4))]
);
assert_eq!(
world
.query::<(Entity, &B, &TableStored)>()
.iter(&world)
.map(|(e, &B(b), &TableStored(s))| (e, b, s))
.collect::<HashSet<_>>(),
HashSet::from([(e2, 4, "xyz"), (e1, 3, "abc")])
);
world.entity_mut(e1).insert(A(43));
assert_eq!(
world
.query::<(Entity, &A, &B)>()
.iter(&world)
.map(|(e, &i, &b)| (e, i, b))
.collect::<HashSet<_>>(),
HashSet::from([(e2, A(2), B(4)), (e1, A(43), B(3))])
);
world.entity_mut(e1).insert(C);
assert_eq!(
world
.query::<(Entity, &C)>()
.iter(&world)
.map(|(e, &f)| (e, f))
.collect::<Vec<_>>(),
&[(e1, C)]
);
}
#[test]
fn table_add_remove_many() {
let mut world = World::default();
#[cfg(miri)]
let (mut entities, to) = {
let to = 10;
(Vec::with_capacity(to), to)
};
#[cfg(not(miri))]
let (mut entities, to) = {
let to = 10_000;
(Vec::with_capacity(to), to)
};
for _ in 0..to {
entities.push(world.spawn(B(0)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(A(i));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(world.entity_mut(entity).take::<A>(), Some(A(i)));
}
}
#[test]
fn sparse_set_add_remove_many() {
let mut world = World::default();
let mut entities = Vec::with_capacity(1000);
for _ in 0..4 {
entities.push(world.spawn(A(2)).id());
}
for (i, entity) in entities.iter().cloned().enumerate() {
world.entity_mut(entity).insert(SparseStored(i as u32));
}
for (i, entity) in entities.iter().cloned().enumerate() {
assert_eq!(
world.entity_mut(entity).take::<SparseStored>(),
Some(SparseStored(i as u32))
);
}
}
#[test]
fn remove_missing() {
let mut world = World::new();
let e = world.spawn((TableStored("abc"), A(123))).id();
assert!(world.entity_mut(e).take::<B>().is_none());
}
#[test]
fn spawn_batch() {
let mut world = World::new();
world.spawn_batch((0..100).map(|x| (A(x), TableStored("abc"))));
let values = world
.query::<&A>()
.iter(&world)
.map(|v| v.0)
.collect::<Vec<_>>();
let expected = (0..100).collect::<Vec<_>>();
assert_eq!(values, expected);
}
#[test]
fn query_get() {
let mut world = World::new();
let a = world.spawn((TableStored("abc"), A(123))).id();
let b = world.spawn((TableStored("def"), A(456))).id();
let c = world.spawn((TableStored("ghi"), A(789), B(1))).id();
let mut i32_query = world.query::<&A>();
assert_eq!(i32_query.get(&world, a).unwrap().0, 123);
assert_eq!(i32_query.get(&world, b).unwrap().0, 456);
let mut i32_bool_query = world.query::<(&A, &B)>();
assert!(i32_bool_query.get(&world, a).is_err());
assert_eq!(i32_bool_query.get(&world, c).unwrap(), (&A(789), &B(1)));
assert!(world.despawn(a));
assert!(i32_query.get(&world, a).is_err());
}
#[test]
fn query_get_works_across_sparse_removal() {
// Regression test for: https://github.com/bevyengine/bevy/issues/6623
let mut world = World::new();
let a = world.spawn((TableStored("abc"), SparseStored(123))).id();
let b = world.spawn((TableStored("def"), SparseStored(456))).id();
let c = world
.spawn((TableStored("ghi"), SparseStored(789), B(1)))
.id();
let mut query = world.query::<&TableStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
world.entity_mut(b).remove::<SparseStored>();
world.entity_mut(c).remove::<SparseStored>();
assert_eq!(query.get(&world, a).unwrap(), &TableStored("abc"));
assert_eq!(query.get(&world, b).unwrap(), &TableStored("def"));
assert_eq!(query.get(&world, c).unwrap(), &TableStored("ghi"));
}
#[test]
fn remove_tracking() {
let mut world = World::new();
let a = world.spawn((SparseStored(0), A(123))).id();
let b = world.spawn((SparseStored(1), A(123))).id();
world.entity_mut(a).despawn();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for table components"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[a],
"despawning results in 'removed component' state for sparse set components"
);
world.entity_mut(b).insert(B(1));
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a],
"archetype moves does not result in 'removed component' state"
);
world.entity_mut(b).remove::<A>();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[a, b],
"removing a component results in a 'removed component' state"
);
world.clear_trackers();
assert_eq!(
world.removed::<A>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
assert_eq!(
world.removed::<SparseStored>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
assert_eq!(
world.removed::<B>().collect::<Vec<_>>(),
&[],
"clearing trackers clears removals"
);
// TODO: uncomment when world.clear() is implemented
// let c = world.spawn(("abc", 123)).id();
// let d = world.spawn(("abc", 123)).id();
// world.clear();
// assert_eq!(
// world.removed::<i32>(),
// &[c, d],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<&'static str>(),
// &[c, d, b],
// "world clears result in 'removed component' states"
// );
// assert_eq!(
// world.removed::<f64>(),
// &[b],
// "world clears result in 'removed component' states"
// );
}
#[test]
fn added_tracking() {
let mut world = World::new();
let a = world.spawn(A(123)).id();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
1
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_ok());
world.clear_trackers();
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert_eq!(world.query::<&A>().iter(&world).count(), 1);
assert_eq!(
world.query_filtered::<(), Added<A>>().iter(&world).count(),
0
);
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
assert!(world.query::<&A>().get(&world, a).is_ok());
assert!(world
.query_filtered::<(), Added<A>>()
.get(&world, a)
.is_err());
}
#[test]
fn added_queries() {
let mut world = World::default();
let e1 = world.spawn(A(0)).id();
fn get_added<Com: Component>(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Added<Com>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_added::<A>(&mut world), vec![e1]);
world.entity_mut(e1).insert(B(0));
assert_eq!(get_added::<A>(&mut world), vec![e1]);
assert_eq!(get_added::<B>(&mut world), vec![e1]);
world.clear_trackers();
assert!(get_added::<A>(&mut world).is_empty());
let e2 = world.spawn((A(1), B(1))).id();
assert_eq!(get_added::<A>(&mut world), vec![e2]);
assert_eq!(get_added::<B>(&mut world), vec![e2]);
let added = world
.query_filtered::<Entity, (Added<A>, Added<B>)>()
.iter(&world)
.collect::<Vec<Entity>>();
assert_eq!(added, vec![e2]);
}
#[test]
fn changed_trackers() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
let e2 = world.spawn((A(0), B(0))).id();
let e3 = world.spawn((A(0), B(0))).id();
world.spawn((A(0), B(0)));
world.clear_trackers();
for (i, mut a) in world.query::<&mut A>().iter_mut(&mut world).enumerate() {
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: QueryFilter>(world: &mut World) -> HashSet<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<HashSet<Entity>>()
}
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e1, e3])
);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// spawning a new A entity should not change existing changed state
world.entity_mut(e1).insert((A(0), B(0)));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<A>>(&mut world),
HashSet::from([e3]),
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<A>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(A(0));
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Added<A>>(&mut world), HashSet::from([e4]));
world.entity_mut(e4).insert(A(1));
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert((A(0), B(0)));
assert!(get_filtered::<Added<A>>(&mut world).is_empty());
assert_eq!(get_filtered::<Changed<A>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Added<B>>(&mut world), HashSet::from([e4]));
assert_eq!(get_filtered::<Changed<B>>(&mut world), HashSet::from([e4]));
}
#[test]
fn changed_trackers_sparse() {
let mut world = World::default();
let e1 = world.spawn(SparseStored(0)).id();
let e2 = world.spawn(SparseStored(0)).id();
let e3 = world.spawn(SparseStored(0)).id();
world.spawn(SparseStored(0));
world.clear_trackers();
for (i, mut a) in world
.query::<&mut SparseStored>()
.iter_mut(&mut world)
.enumerate()
{
if i % 2 == 0 {
a.0 += 1;
}
}
fn get_filtered<F: QueryFilter>(world: &mut World) -> HashSet<Entity> {
world
.query_filtered::<Entity, F>()
.iter(world)
.collect::<HashSet<Entity>>()
}
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e1, e3])
);
// ensure changing an entity's archetypes also moves its changed state
world.entity_mut(e1).insert(C);
assert_eq!(get_filtered::<Changed<SparseStored>>(&mut world), HashSet::from([e3, e1]), "changed entities list should not change (although the order will due to archetype moves)");
// spawning a new SparseStored entity should not change existing changed state
world.entity_mut(e1).insert(SparseStored(0));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing an unchanged entity should not change changed state
assert!(world.despawn(e2));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3, e1]),
"changed entities list should not change"
);
// removing a changed entity should remove it from enumeration
assert!(world.despawn(e1));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e3]),
"e1 should no longer be returned"
);
world.clear_trackers();
assert!(get_filtered::<Changed<SparseStored>>(&mut world).is_empty());
let e4 = world.spawn_empty().id();
world.entity_mut(e4).insert(SparseStored(0));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
assert_eq!(
get_filtered::<Added<SparseStored>>(&mut world),
HashSet::from([e4])
);
world.entity_mut(e4).insert(A(1));
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
world.clear_trackers();
// ensure inserting multiple components set changed state for all components and set added
// state for non existing components even when changing archetype.
world.entity_mut(e4).insert(SparseStored(0));
assert!(get_filtered::<Added<SparseStored>>(&mut world).is_empty());
assert_eq!(
get_filtered::<Changed<SparseStored>>(&mut world),
HashSet::from([e4])
);
}
#[test]
fn empty_spawn() {
let mut world = World::default();
let e = world.spawn_empty().id();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn reserve_and_spawn() {
let mut world = World::default();
let e = world.entities().reserve_entity();
world.flush_entities();
let mut e_mut = world.entity_mut(e);
e_mut.insert(A(0));
assert_eq!(e_mut.get::<A>().unwrap(), &A(0));
}
#[test]
fn changed_query() {
let mut world = World::default();
let e1 = world.spawn((A(0), B(0))).id();
fn get_changed(world: &mut World) -> Vec<Entity> {
world
.query_filtered::<Entity, Changed<A>>()
.iter(world)
.collect::<Vec<Entity>>()
}
assert_eq!(get_changed(&mut world), vec![e1]);
world.clear_trackers();
assert_eq!(get_changed(&mut world), vec![]);
*world.get_mut(e1).unwrap() = A(1);
assert_eq!(get_changed(&mut world), vec![e1]);
}
#[test]
fn resource() {
use crate::system::Resource;
#[derive(Resource, PartialEq, Debug)]
struct Num(i32);
#[derive(Resource, PartialEq, Debug)]
struct BigNum(u64);
let mut world = World::default();
assert!(world.get_resource::<Num>().is_none());
assert!(!world.contains_resource::<Num>());
assert!(!world.is_resource_added::<Num>());
assert!(!world.is_resource_changed::<Num>());
world.insert_resource(Num(123));
let resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
let archetype_component_id = world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(world.resource::<Num>().0, 123);
assert!(world.contains_resource::<Num>());
assert!(world.is_resource_added::<Num>());
assert!(world.is_resource_changed::<Num>());
world.insert_resource(BigNum(456));
assert_eq!(world.resource::<BigNum>().0, 456u64);
world.insert_resource(BigNum(789));
assert_eq!(world.resource::<BigNum>().0, 789);
{
let mut value = world.resource_mut::<BigNum>();
assert_eq!(value.0, 789);
value.0 = 10;
}
assert_eq!(
world.resource::<BigNum>().0,
10,
"resource changes are preserved"
);
assert_eq!(
world.remove_resource::<BigNum>(),
Some(BigNum(10)),
"removed resource has the correct value"
);
assert_eq!(
world.get_resource::<BigNum>(),
None,
"removed resource no longer exists"
);
assert_eq!(
world.remove_resource::<BigNum>(),
None,
"double remove returns nothing"
);
world.insert_resource(BigNum(1));
assert_eq!(
world.get_resource::<BigNum>(),
Some(&BigNum(1)),
"re-inserting resources works"
);
assert_eq!(
world.get_resource::<Num>(),
Some(&Num(123)),
"other resources are unaffected"
);
let current_resource_id = world
.components()
.get_resource_id(TypeId::of::<Num>())
.unwrap();
assert_eq!(
resource_id, current_resource_id,
"resource id does not change after removing / re-adding"
);
let current_archetype_component_id =
world.storages().resources.get(resource_id).unwrap().id();
assert_eq!(
archetype_component_id, current_archetype_component_id,
"resource archetype component id does not change after removing / re-adding"
);
}
#[test]
fn remove() {
let mut world = World::default();
let e1 = world.spawn((A(1), B(1), TableStored("a"))).id();
let mut e = world.entity_mut(e1);
assert_eq!(e.get::<TableStored>(), Some(&TableStored("a")));
assert_eq!(e.get::<A>(), Some(&A(1)));
assert_eq!(e.get::<B>(), Some(&B(1)));
assert_eq!(
e.get::<C>(),
None,
"C is not in the entity, so it should not exist"
);
e.remove::<(A, B, C)>();
assert_eq!(
e.get::<TableStored>(),
Some(&TableStored("a")),
"TableStored is not in the removed bundle, so it should exist"
);
assert_eq!(
e.get::<A>(),
None,
"Num is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<B>(),
None,
"f64 is in the removed bundle, so it should not exist"
);
assert_eq!(
e.get::<C>(),
None,
"usize is in the removed bundle, so it should not exist"
);
}
#[test]
fn take() {
let mut world = World::default();
world.spawn((A(1), B(1), TableStored("1")));
let e2 = world.spawn((A(2), B(2), TableStored("2"))).id();
world.spawn((A(3), B(3), TableStored("3")));
let mut query = world.query::<(&B, &TableStored)>();
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([(1, "1"), (2, "2"), (3, "3"),]));
let removed_bundle = world.entity_mut(e2).take::<(B, TableStored)>().unwrap();
assert_eq!(removed_bundle, (B(2), TableStored("2")));
let results = query
.iter(&world)
.map(|(a, b)| (a.0, b.0))
.collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([(1, "1"), (3, "3"),]));
let mut a_query = world.query::<&A>();
let results = a_query.iter(&world).map(|a| a.0).collect::<HashSet<_>>();
assert_eq!(results, HashSet::from([1, 3, 2]));
let entity_ref = world.entity(e2);
assert_eq!(
entity_ref.get::<A>(),
Some(&A(2)),
"A is not in the removed bundle, so it should exist"
);
assert_eq!(
entity_ref.get::<B>(),
None,
"B is in the removed bundle, so it should not exist"
);
assert_eq!(
entity_ref.get::<TableStored>(),
None,
"TableStored is in the removed bundle, so it should not exist"
);
}
#[test]
fn non_send_resource() {
let mut world = World::default();
world.insert_non_send_resource(123i32);
world.insert_non_send_resource(456i64);
assert_eq!(*world.non_send_resource::<i32>(), 123);
assert_eq!(*world.non_send_resource_mut::<i64>(), 456);
}
#[test]
fn non_send_resource_points_to_distinct_data() {
let mut world = World::default();
world.insert_resource(A(123));
world.insert_non_send_resource(A(456));
assert_eq!(*world.resource::<A>(), A(123));
assert_eq!(*world.non_send_resource::<A>(), A(456));
}
#[test]
#[should_panic]
fn non_send_resource_panic() {
let mut world = World::default();
world.insert_non_send_resource(0i32);
std::thread::spawn(move || {
let _ = world.non_send_resource_mut::<i32>();
})
.join()
.unwrap();
}
#[test]
fn exact_size_query() {
let mut world = World::default();
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0)));
world.spawn((A(0), B(0), C));
world.spawn(C);
let mut query = world.query::<(&A, &B)>();
assert_eq!(query.iter(&world).len(), 3);
}
#[test]
#[should_panic]
fn duplicate_components_panic() {
let mut world = World::new();
world.spawn((A(1), A(2)));
}
#[test]
#[should_panic]
fn ref_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&A, &mut A)>();
}
#[test]
#[should_panic]
fn entity_ref_and_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityRef, &mut A)>();
}
#[test]
#[should_panic]
fn mut_and_ref_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &A)>();
}
#[test]
#[should_panic]
fn mut_and_entity_ref_query_panic() {
let mut world = World::new();
world.query::<(&mut A, EntityRef)>();
}
#[test]
#[should_panic]
fn entity_ref_and_entity_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityRef, EntityMut)>();
}
#[test]
#[should_panic]
fn entity_mut_and_entity_mut_query_panic() {
let mut world = World::new();
world.query::<(EntityMut, EntityMut)>();
}
#[test]
fn entity_ref_and_entity_ref_query_no_panic() {
let mut world = World::new();
world.query::<(EntityRef, EntityRef)>();
}
#[test]
#[should_panic]
fn mut_and_mut_query_panic() {
let mut world = World::new();
world.query::<(&mut A, &mut A)>();
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_iter() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.iter(&world_a);
query.iter(&world_b);
}
#[test]
fn query_filters_dont_collide_with_fetches() {
let mut world = World::new();
world.query_filtered::<&mut A, Changed<A>>();
}
#[test]
fn filtered_query_access() {
let mut world = World::new();
let query = world.query_filtered::<&mut A, Changed<B>>();
let mut expected = FilteredAccess::<ComponentId>::default();
let a_id = world.components.get_id(TypeId::of::<A>()).unwrap();
let b_id = world.components.get_id(TypeId::of::<B>()).unwrap();
expected.add_component_write(a_id);
expected.add_component_read(b_id);
assert!(
query.component_access.eq(&expected),
"ComponentId access from query fetch and query filter should be combined"
);
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_get() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
let _ = query.get(&world_a, Entity::from_raw(0));
let _ = query.get(&world_b, Entity::from_raw(0));
}
#[test]
#[should_panic]
fn multiple_worlds_same_query_for_each() {
let mut world_a = World::new();
let world_b = World::new();
let mut query = world_a.query::<&A>();
query.iter(&world_a).for_each(|_| {});
query.iter(&world_b).for_each(|_| {});
}
#[test]
fn resource_scope() {
let mut world = World::default();
world.insert_resource(A(0));
world.resource_scope(|world: &mut World, mut value: Mut<A>| {
value.0 += 1;
assert!(!world.contains_resource::<A>());
});
assert_eq!(world.resource::<A>().0, 1);
}
#[test]
#[should_panic(
expected = "Attempted to access or drop non-send resource bevy_ecs::tests::NonSendA from thread"
)]
fn non_send_resource_drop_from_different_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
let thread = std::thread::spawn(move || {
// Dropping the non-send resource on a different thread
// Should result in a panic
drop(world);
});
if let Err(err) = thread.join() {
std::panic::resume_unwind(err);
}
}
#[test]
fn non_send_resource_drop_from_same_thread() {
let mut world = World::default();
world.insert_non_send_resource(NonSendA::default());
drop(world);
}
#[test]
fn insert_overwrite_drop() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world.spawn(dropck1).insert(dropck2);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn insert_overwrite_drop_sparse() {
let (dropck1, dropped1) = DropCk::new_pair();
let (dropck2, dropped2) = DropCk::new_pair();
let mut world = World::default();
world
.spawn(DropCkSparse(dropck1))
.insert(DropCkSparse(dropck2));
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 0);
drop(world);
assert_eq!(dropped1.load(Ordering::Relaxed), 1);
assert_eq!(dropped2.load(Ordering::Relaxed), 1);
}
#[test]
fn clear_entities() {
let mut world = World::default();
world.insert_resource(A(0));
world.spawn(A(1));
world.spawn(SparseStored(1));
let mut q1 = world.query::<&A>();
let mut q2 = world.query::<&SparseStored>();
assert_eq!(q1.iter(&world).len(), 1);
assert_eq!(q2.iter(&world).len(), 1);
assert_eq!(world.entities().len(), 2);
world.clear_entities();
assert_eq!(
q1.iter(&world).len(),
0,
"world should not contain table components"
);
assert_eq!(
q2.iter(&world).len(),
0,
"world should not contain sparse set components"
);
assert_eq!(
world.entities().len(),
0,
"world should not have any entities"
);
assert_eq!(
world.resource::<A>().0,
0,
"world should still contain resources"
);
}
#[test]
fn test_is_archetypal_size_hints() {
let mut world = World::default();
macro_rules! query_min_size {
($query:ty, $filter:ty) => {
world
.query_filtered::<$query, $filter>()
.iter(&world)
.size_hint()
.0
};
}
world.spawn((A(1), B(1), C));
world.spawn((A(1), C));
world.spawn((A(1), B(1)));
world.spawn((B(1), C));
world.spawn(A(1));
world.spawn(C);
assert_eq!(2, query_min_size![(), (With<A>, Without<B>)]);
assert_eq!(3, query_min_size![&B, Or<(With<A>, With<C>)>]);
assert_eq!(1, query_min_size![&B, (With<A>, With<C>)]);
assert_eq!(1, query_min_size![(&A, &B), With<C>]);
assert_eq!(4, query_min_size![&A, ()], "Simple Archetypal");
assert_eq!(4, query_min_size![Ref<A>, ()]);
// All the following should set minimum size to 0, as it's impossible to predict
// how many entities the filters will trim.
assert_eq!(0, query_min_size![(), Added<A>], "Simple Added");
assert_eq!(0, query_min_size![(), Changed<A>], "Simple Changed");
assert_eq!(0, query_min_size![(&A, &B), Changed<A>]);
assert_eq!(0, query_min_size![&A, (Changed<A>, With<B>)]);
assert_eq!(0, query_min_size![(&A, &B), Or<(Changed<A>, Changed<B>)>]);
}
#[test]
fn insert_or_spawn_batch() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let values = vec![(e0, (B(0), C)), (e1, (B(1), C))];
world.insert_or_spawn_batch(values).unwrap();
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
#[test]
fn insert_or_spawn_batch_invalid() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let e2 = world.spawn_empty().id();
let invalid_e2 =
Entity::from_raw_and_generation(e2.index(), NonZero::<u32>::new(2).unwrap());
let values = vec![(e0, (B(0), C)), (e1, (B(1), C)), (invalid_e2, (B(2), C))];
let result = world.insert_or_spawn_batch(values);
assert_eq!(
result,
Err(vec![invalid_e2]),
"e2 failed to be spawned or inserted into"
);
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"existing component was preserved"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"pre-existing entity received correct B component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"new entity was spawned and received correct B component"
);
assert_eq!(
world.get::<C>(e0),
Some(&C),
"pre-existing entity received C component"
);
assert_eq!(
world.get::<C>(e1),
Some(&C),
"new entity was spawned and received C component"
);
}
#[test]
fn insert_batch() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = world.spawn(B(0)).id();
let values = vec![(e0, (A(1), B(0))), (e1, (A(0), B(1)))];
world.insert_batch(values);
assert_eq!(
world.get::<A>(e0),
Some(&A(1)),
"first entity's A component should have been replaced"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"first entity should have received B component"
);
assert_eq!(
world.get::<A>(e1),
Some(&A(0)),
"second entity should have received A component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(1)),
"second entity's B component should have been replaced"
);
}
#[test]
fn insert_batch_same_archetype() {
let mut world = World::default();
let e0 = world.spawn((A(0), B(0))).id();
let e1 = world.spawn((A(0), B(0))).id();
let e2 = world.spawn(B(0)).id();
let values = vec![(e0, (B(1), C)), (e1, (B(2), C)), (e2, (B(3), C))];
world.insert_batch(values);
let mut query = world.query::<(Option<&A>, &B, &C)>();
let component_values = query.get_many(&world, [e0, e1, e2]).unwrap();
assert_eq!(
component_values,
[(Some(&A(0)), &B(1), &C), (Some(&A(0)), &B(2), &C), (None, &B(3), &C)],
"all entities should have had their B component replaced, received C component, and had their A component (or lack thereof) unchanged"
);
}
#[test]
fn insert_batch_if_new() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = world.spawn(B(0)).id();
let values = vec![(e0, (A(1), B(0))), (e1, (A(0), B(1)))];
world.insert_batch_if_new(values);
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"first entity's A component should not have been replaced"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"first entity should have received B component"
);
assert_eq!(
world.get::<A>(e1),
Some(&A(0)),
"second entity should have received A component"
);
assert_eq!(
world.get::<B>(e1),
Some(&B(0)),
"second entity's B component should not have been replaced"
);
}
#[test]
fn try_insert_batch() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let values = vec![(e0, (A(1), B(0))), (e1, (A(0), B(1)))];
world.try_insert_batch(values);
assert_eq!(
world.get::<A>(e0),
Some(&A(1)),
"first entity's A component should have been replaced"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"first entity should have received B component"
);
}
#[test]
fn try_insert_batch_if_new() {
let mut world = World::default();
let e0 = world.spawn(A(0)).id();
let e1 = Entity::from_raw(1);
let values = vec![(e0, (A(1), B(0))), (e1, (A(0), B(1)))];
world.try_insert_batch_if_new(values);
assert_eq!(
world.get::<A>(e0),
Some(&A(0)),
"first entity's A component should not have been replaced"
);
assert_eq!(
world.get::<B>(e0),
Some(&B(0)),
"first entity should have received B component"
);
}
#[test]
fn required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component)]
#[require(Z(new_z))]
struct Y {
value: String,
}
#[derive(Component)]
struct Z(u32);
impl Default for Y {
fn default() -> Self {
Self {
value: "hello".to_string(),
}
}
}
fn new_z() -> Z {
Z(7)
}
let mut world = World::new();
let id = world.spawn(X).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world
.spawn((
X,
Y {
value: "foo".to_string(),
},
))
.id();
assert_eq!(
"foo",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the manually provided value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world.spawn((X, Z(8))).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
8,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the manually provided value"
);
}
#[test]
fn generic_required_components() {
#[derive(Component)]
#[require(Y<usize>)]
struct X;
#[derive(Component, Default)]
struct Y<T> {
value: T,
}
let mut world = World::new();
let id = world.spawn(X).id();
assert_eq!(
0,
world.entity(id).get::<Y<usize>>().unwrap().value,
"Y should have the default value"
);
}
#[test]
fn required_components_spawn_nonexistent_hooks() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Resource)]
struct A(usize);
#[derive(Resource)]
struct I(usize);
let mut world = World::new();
world.insert_resource(A(0));
world.insert_resource(I(0));
world
.register_component_hooks::<Y>()
.on_add(|mut world, _, _| world.resource_mut::<A>().0 += 1)
.on_insert(|mut world, _, _| world.resource_mut::<I>().0 += 1);
// Spawn entity and ensure Y was added
assert!(world.spawn(X).contains::<Y>());
assert_eq!(world.resource::<A>().0, 1);
assert_eq!(world.resource::<I>().0, 1);
}
#[test]
fn required_components_insert_existing_hooks() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Resource)]
struct A(usize);
#[derive(Resource)]
struct I(usize);
let mut world = World::new();
world.insert_resource(A(0));
world.insert_resource(I(0));
world
.register_component_hooks::<Y>()
.on_add(|mut world, _, _| world.resource_mut::<A>().0 += 1)
.on_insert(|mut world, _, _| world.resource_mut::<I>().0 += 1);
// Spawn entity and ensure Y was added
assert!(world.spawn_empty().insert(X).contains::<Y>());
assert_eq!(world.resource::<A>().0, 1);
assert_eq!(world.resource::<I>().0, 1);
}
#[test]
fn required_components_take_leaves_required() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
let e = world.spawn(X).id();
let _ = world.entity_mut(e).take::<X>().unwrap();
assert!(world.entity_mut(e).contains::<Y>());
}
#[test]
fn required_components_retain_keeps_required() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
let mut world = World::new();
let e = world.spawn((X, Z)).id();
world.entity_mut(e).retain::<X>();
assert!(world.entity_mut(e).contains::<X>());
assert!(world.entity_mut(e).contains::<Y>());
assert!(!world.entity_mut(e).contains::<Z>());
}
#[test]
fn required_components_spawn_then_insert_no_overwrite() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y(usize);
let mut world = World::new();
let id = world.spawn((X, Y(10))).id();
world.entity_mut(id).insert(X);
assert_eq!(
10,
world.entity(id).get::<Y>().unwrap().0,
"Y should still have the manually provided value"
);
}
#[test]
fn dynamic_required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
let x_id = world.register_component::<X>();
let mut e = world.spawn_empty();
// SAFETY: x_id is a valid component id
bevy_ptr::OwningPtr::make(X, |ptr| unsafe {
e.insert_by_id(x_id, ptr);
});
assert!(e.contains::<Y>());
}
#[test]
fn remove_component_and_his_runtime_required_components() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
#[derive(Component)]
struct V;
let mut world = World::new();
world.register_required_components::<X, Y>();
world.register_required_components::<Y, Z>();
let e = world.spawn((X, V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//check that `remove` works as expected
world.entity_mut(e).remove::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).insert(X);
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//remove `X` again and ensure that `Y` and `Z` was removed too
world.entity_mut(e).remove_with_requires::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn remove_component_and_his_required_components() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
#[require(Z)]
struct Y;
#[derive(Component, Default)]
struct Z;
#[derive(Component)]
struct V;
let mut world = World::new();
let e = world.spawn((X, V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//check that `remove` works as expected
world.entity_mut(e).remove::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).insert(X);
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
//remove `X` again and ensure that `Y` and `Z` was removed too
world.entity_mut(e).remove_with_requires::<X>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn remove_bundle_and_his_required_components() {
#[derive(Component, Default)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
#[require(W)]
struct Z;
#[derive(Component, Default)]
struct W;
#[derive(Component)]
struct V;
#[derive(Bundle, Default)]
struct TestBundle {
x: X,
z: Z,
}
let mut world = World::new();
let e = world.spawn((TestBundle::default(), V)).id();
assert!(world.entity(e).contains::<X>());
assert!(world.entity(e).contains::<Y>());
assert!(world.entity(e).contains::<Z>());
assert!(world.entity(e).contains::<W>());
assert!(world.entity(e).contains::<V>());
world.entity_mut(e).remove_with_requires::<TestBundle>();
assert!(!world.entity(e).contains::<X>());
assert!(!world.entity(e).contains::<Y>());
assert!(!world.entity(e).contains::<Z>());
assert!(!world.entity(e).contains::<W>());
assert!(world.entity(e).contains::<V>());
}
#[test]
fn runtime_required_components() {
// Same as `required_components` test but with runtime registration
#[derive(Component)]
struct X;
#[derive(Component)]
struct Y {
value: String,
}
#[derive(Component)]
struct Z(u32);
impl Default for Y {
fn default() -> Self {
Self {
value: "hello".to_string(),
}
}
}
let mut world = World::new();
world.register_required_components::<X, Y>();
world.register_required_components_with::<Y, Z>(|| Z(7));
let id = world.spawn(X).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world
.spawn((
X,
Y {
value: "foo".to_string(),
},
))
.id();
assert_eq!(
"foo",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the manually provided value"
);
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in Y"
);
let id = world.spawn((X, Z(8))).id();
assert_eq!(
"hello",
world.entity(id).get::<Y>().unwrap().value,
"Y should have the default value"
);
assert_eq!(
8,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the manually provided value"
);
}
#[test]
fn runtime_required_components_override_1() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component)]
struct Z(u32);
let mut world = World::new();
// - X requires Y with default constructor
// - Y requires Z with custom constructor
// - X requires Z with custom constructor (more specific than X -> Y -> Z)
world.register_required_components::<X, Y>();
world.register_required_components_with::<Y, Z>(|| Z(5));
world.register_required_components_with::<X, Z>(|| Z(7));
let id = world.spawn(X).id();
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in X"
);
}
#[test]
fn runtime_required_components_override_2() {
// Same as `runtime_required_components_override_1` test but with different registration order
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component)]
struct Z(u32);
let mut world = World::new();
// - X requires Y with default constructor
// - X requires Z with custom constructor (more specific than X -> Y -> Z)
// - Y requires Z with custom constructor
world.register_required_components::<X, Y>();
world.register_required_components_with::<X, Z>(|| Z(7));
world.register_required_components_with::<Y, Z>(|| Z(5));
let id = world.spawn(X).id();
assert_eq!(
7,
world.entity(id).get::<Z>().unwrap().0,
"Z should have the value provided by the constructor defined in X"
);
}
#[test]
fn runtime_required_components_propagate_up() {
// `A` requires `B` directly.
#[derive(Component)]
#[require(B)]
struct A;
#[derive(Component, Default)]
struct B;
#[derive(Component, Default)]
struct C;
let mut world = World::new();
// `B` requires `C` with a runtime registration.
// `A` should also require `C` because it requires `B`.
world.register_required_components::<B, C>();
let id = world.spawn(A).id();
assert!(world.entity(id).get::<C>().is_some());
}
#[test]
fn runtime_required_components_existing_archetype() {
#[derive(Component)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
// Registering required components after the archetype has already been created should panic.
// This may change in the future.
world.spawn(X);
assert!(matches!(
world.try_register_required_components::<X, Y>(),
Err(RequiredComponentsError::ArchetypeExists(_))
));
}
#[test]
fn runtime_required_components_fail_with_duplicate() {
#[derive(Component)]
#[require(Y)]
struct X;
#[derive(Component, Default)]
struct Y;
let mut world = World::new();
// This should fail: Tried to register Y as a requirement for X, but the requirement already exists.
assert!(matches!(
world.try_register_required_components::<X, Y>(),
Err(RequiredComponentsError::DuplicateRegistration(_, _))
));
}
#[test]
fn required_components_inheritance_depth() {
// Test that inheritance depths are computed correctly for requirements.
//
// Requirements with `require` attribute:
//
// A -> B -> C
// 0 1
//
// Runtime requirements:
//
// X -> A -> B -> C
// 0 1 2
//
// X -> Y -> Z -> B -> C
// 0 1 2 3
#[derive(Component, Default)]
#[require(B)]
struct A;
#[derive(Component, Default)]
#[require(C)]
struct B;
#[derive(Component, Default)]
struct C;
#[derive(Component, Default)]
struct X;
#[derive(Component, Default)]
struct Y;
#[derive(Component, Default)]
struct Z;
let mut world = World::new();
let a = world.register_component::<A>();
let b = world.register_component::<B>();
let c = world.register_component::<C>();
let y = world.register_component::<Y>();
let z = world.register_component::<Z>();
world.register_required_components::<X, A>();
world.register_required_components::<X, Y>();
world.register_required_components::<Y, Z>();
world.register_required_components::<Z, B>();
world.spawn(X);
let required_a = world.get_required_components::<A>().unwrap();
let required_b = world.get_required_components::<B>().unwrap();
let required_c = world.get_required_components::<C>().unwrap();
let required_x = world.get_required_components::<X>().unwrap();
let required_y = world.get_required_components::<Y>().unwrap();
let required_z = world.get_required_components::<Z>().unwrap();
/// Returns the component IDs and inheritance depths of the required components
/// in ascending order based on the component ID.
fn to_vec(required: &RequiredComponents) -> Vec<(ComponentId, u16)> {
let mut vec = required
.0
.iter()
.map(|(id, component)| (*id, component.inheritance_depth))
.collect::<Vec<_>>();
vec.sort_by_key(|(id, _)| *id);
vec
}
// Check that the inheritance depths are correct for each component.
assert_eq!(to_vec(required_a), vec![(b, 0), (c, 1)]);
assert_eq!(to_vec(required_b), vec![(c, 0)]);
assert_eq!(to_vec(required_c), vec![]);
assert_eq!(
to_vec(required_x),
vec![(a, 0), (b, 1), (c, 2), (y, 0), (z, 1)]
);
assert_eq!(to_vec(required_y), vec![(b, 1), (c, 2), (z, 0)]);
assert_eq!(to_vec(required_z), vec![(b, 0), (c, 1)]);
}
// These structs are primarily compilation tests to test the derive macros. Because they are
// never constructed, we have to manually silence the `dead_code` lint.
#[allow(dead_code)]
#[derive(Component)]
struct ComponentA(u32);
#[allow(dead_code)]
#[derive(Component)]
struct ComponentB(u32);
#[allow(dead_code)]
#[derive(Bundle)]
struct Simple(ComponentA);
#[allow(dead_code)]
#[derive(Bundle)]
struct Tuple(Simple, ComponentB);
#[allow(dead_code)]
#[derive(Bundle)]
struct Record {
field0: Simple,
field1: ComponentB,
}
#[allow(dead_code)]
#[derive(Component, VisitEntities, VisitEntitiesMut)]
struct MyEntities {
entities: Vec<Entity>,
another_one: Entity,
maybe_entity: Option<Entity>,
#[visit_entities(ignore)]
something_else: String,
}
#[allow(dead_code)]
#[derive(Component, VisitEntities, VisitEntitiesMut)]
struct MyEntitiesTuple(Vec<Entity>, Entity, #[visit_entities(ignore)] usize);
}