2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2024-12-29 14:33:12 +00:00
bevy/examples/3d/split_screen.rs
Carter Anderson 015f2c69ca
Merge Style properties into Node. Use ComputedNode for computed properties. ()
# Objective

Continue improving the user experience of our UI Node API in the
direction specified by [Bevy's Next Generation Scene / UI
System](https://github.com/bevyengine/bevy/discussions/14437)

## Solution

As specified in the document above, merge `Style` fields into `Node`,
and move "computed Node fields" into `ComputedNode` (I chose this name
over something like `ComputedNodeLayout` because it currently contains
more than just layout info. If we want to break this up / rename these
concepts, lets do that in a separate PR). `Style` has been removed.

This accomplishes a number of goals:

## Ergonomics wins

Specifying both `Node` and `Style` is now no longer required for
non-default styles

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

## Conceptual clarity

`Style` was never a comprehensive "style sheet". It only defined "core"
style properties that all `Nodes` shared. Any "styled property" that
couldn't fit that mold had to be in a separate component. A "real" style
system would style properties _across_ components (`Node`, `Button`,
etc). We have plans to build a true style system (see the doc linked
above).

By moving the `Style` fields to `Node`, we fully embrace `Node` as the
driving concept and remove the "style system" confusion.

## Next Steps

* Consider identifying and splitting out "style properties that aren't
core to Node". This should not happen for Bevy 0.15.

---

## Migration Guide

Move any fields set on `Style` into `Node` and replace all `Style`
component usage with `Node`.

Before:
```rust
commands.spawn((
    Node::default(),
    Style {
        width:  Val::Px(100.),
        ..default()
    },
));
```

After:

```rust
commands.spawn(Node {
    width:  Val::Px(100.),
    ..default()
});
```

For any usage of the "computed node properties" that used to live on
`Node`, use `ComputedNode` instead:

Before:
```rust
fn system(nodes: Query<&Node>) {
    for node in &nodes {
        let computed_size = node.size();
    }
}
```

After:
```rust
fn system(computed_nodes: Query<&ComputedNode>) {
    for computed_node in &computed_nodes {
        let computed_size = computed_node.size();
    }
}
```
2024-10-18 22:25:33 +00:00

205 lines
6.4 KiB
Rust

//! Renders two cameras to the same window to accomplish "split screen".
use std::f32::consts::PI;
use bevy::{
pbr::CascadeShadowConfigBuilder, prelude::*, render::camera::Viewport, window::WindowResized,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, (set_camera_viewports, button_system))
.run();
}
/// set up a simple 3D scene
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// plane
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(100.0, 100.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
commands.spawn(SceneRoot(
asset_server.load(GltfAssetLabel::Scene(0).from_asset("models/animated/Fox.glb")),
));
// Light
commands.spawn((
Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 1.0, -PI / 4.)),
DirectionalLight {
shadows_enabled: true,
..default()
},
CascadeShadowConfigBuilder {
num_cascades: if cfg!(all(
feature = "webgl2",
target_arch = "wasm32",
not(feature = "webgpu")
)) {
// Limited to 1 cascade in WebGL
1
} else {
2
},
first_cascade_far_bound: 200.0,
maximum_distance: 280.0,
..default()
}
.build(),
));
// Cameras and their dedicated UI
for (index, (camera_name, camera_pos)) in [
("Player 1", Vec3::new(0.0, 200.0, -150.0)),
("Player 2", Vec3::new(150.0, 150., 50.0)),
("Player 3", Vec3::new(100.0, 150., -150.0)),
("Player 4", Vec3::new(-100.0, 80., 150.0)),
]
.iter()
.enumerate()
{
let camera = commands
.spawn((
Camera3d::default(),
Transform::from_translation(*camera_pos).looking_at(Vec3::ZERO, Vec3::Y),
Camera {
// Renders cameras with different priorities to prevent ambiguities
order: index as isize,
..default()
},
CameraPosition {
pos: UVec2::new((index % 2) as u32, (index / 2) as u32),
},
))
.id();
// Set up UI
commands
.spawn((
TargetCamera(camera),
Node {
width: Val::Percent(100.),
height: Val::Percent(100.),
..default()
},
))
.with_children(|parent| {
parent.spawn((
Text::new(*camera_name),
Node {
position_type: PositionType::Absolute,
top: Val::Px(12.),
left: Val::Px(12.),
..default()
},
));
buttons_panel(parent);
});
}
fn buttons_panel(parent: &mut ChildBuilder) {
parent
.spawn(Node {
position_type: PositionType::Absolute,
width: Val::Percent(100.),
height: Val::Percent(100.),
display: Display::Flex,
flex_direction: FlexDirection::Row,
justify_content: JustifyContent::SpaceBetween,
align_items: AlignItems::Center,
padding: UiRect::all(Val::Px(20.)),
..default()
})
.with_children(|parent| {
rotate_button(parent, "<", Direction::Left);
rotate_button(parent, ">", Direction::Right);
});
}
fn rotate_button(parent: &mut ChildBuilder, caption: &str, direction: Direction) {
parent
.spawn((
RotateCamera(direction),
Button,
Node {
width: Val::Px(40.),
height: Val::Px(40.),
border: UiRect::all(Val::Px(2.)),
justify_content: JustifyContent::Center,
align_items: AlignItems::Center,
..default()
},
BorderColor(Color::WHITE),
BackgroundColor(Color::srgb(0.25, 0.25, 0.25)),
))
.with_children(|parent| {
parent.spawn(Text::new(caption));
});
}
}
#[derive(Component)]
struct CameraPosition {
pos: UVec2,
}
#[derive(Component)]
struct RotateCamera(Direction);
enum Direction {
Left,
Right,
}
fn set_camera_viewports(
windows: Query<&Window>,
mut resize_events: EventReader<WindowResized>,
mut query: Query<(&CameraPosition, &mut Camera)>,
) {
// We need to dynamically resize the camera's viewports whenever the window size changes
// so then each camera always takes up half the screen.
// A resize_event is sent when the window is first created, allowing us to reuse this system for initial setup.
for resize_event in resize_events.read() {
let window = windows.get(resize_event.window).unwrap();
let size = window.physical_size() / 2;
for (camera_position, mut camera) in &mut query {
camera.viewport = Some(Viewport {
physical_position: camera_position.pos * size,
physical_size: size,
..default()
});
}
}
}
#[allow(clippy::type_complexity)]
fn button_system(
interaction_query: Query<
(&Interaction, &TargetCamera, &RotateCamera),
(Changed<Interaction>, With<Button>),
>,
mut camera_query: Query<&mut Transform, With<Camera>>,
) {
for (interaction, target_camera, RotateCamera(direction)) in &interaction_query {
if let Interaction::Pressed = *interaction {
// Since TargetCamera propagates to the children, we can use it to find
// which side of the screen the button is on.
if let Ok(mut camera_transform) = camera_query.get_mut(target_camera.entity()) {
let angle = match direction {
Direction::Left => -0.1,
Direction::Right => 0.1,
};
camera_transform.rotate_around(Vec3::ZERO, Quat::from_axis_angle(Vec3::Y, angle));
}
}
}
}