bevy/crates/bevy_ecs/src/event/base.rs
Zachary Harrold d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00

122 lines
3.7 KiB
Rust

use crate::{component::Component, traversal::Traversal};
#[cfg(feature = "bevy_reflect")]
use bevy_reflect::Reflect;
use core::{
cmp::Ordering,
fmt,
hash::{Hash, Hasher},
marker::PhantomData,
};
/// Something that "happens" and might be read / observed by app logic.
///
/// Events can be stored in an [`Events<E>`] resource
/// You can conveniently access events using the [`EventReader`] and [`EventWriter`] system parameter.
///
/// Events can also be "triggered" on a [`World`], which will then cause any [`Observer`] of that trigger to run.
///
/// This trait can be derived.
///
/// Events implement the [`Component`] type (and they automatically do when they are derived). Events are (generally)
/// not directly inserted as components. More often, the [`ComponentId`] is used to identify the event type within the
/// context of the ECS.
///
/// Events must be thread-safe.
///
/// [`World`]: crate::world::World
/// [`ComponentId`]: crate::component::ComponentId
/// [`Observer`]: crate::observer::Observer
/// [`Events<E>`]: super::Events
/// [`EventReader`]: super::EventReader
/// [`EventWriter`]: super::EventWriter
#[diagnostic::on_unimplemented(
message = "`{Self}` is not an `Event`",
label = "invalid `Event`",
note = "consider annotating `{Self}` with `#[derive(Event)]`"
)]
pub trait Event: Component {
/// The component that describes which Entity to propagate this event to next, when [propagation] is enabled.
///
/// [propagation]: crate::observer::Trigger::propagate
type Traversal: Traversal;
/// When true, this event will always attempt to propagate when [triggered], without requiring a call
/// to [`Trigger::propagate`].
///
/// [triggered]: crate::system::Commands::trigger_targets
/// [`Trigger::propagate`]: crate::observer::Trigger::propagate
const AUTO_PROPAGATE: bool = false;
}
/// An `EventId` uniquely identifies an event stored in a specific [`World`].
///
/// An `EventId` can among other things be used to trace the flow of an event from the point it was
/// sent to the point it was processed. `EventId`s increase monotonically by send order.
///
/// [`World`]: crate::world::World
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub struct EventId<E: Event> {
/// Uniquely identifies the event associated with this ID.
// This value corresponds to the order in which each event was added to the world.
pub id: usize,
#[cfg_attr(feature = "bevy_reflect", reflect(ignore))]
pub(super) _marker: PhantomData<E>,
}
impl<E: Event> Copy for EventId<E> {}
impl<E: Event> Clone for EventId<E> {
fn clone(&self) -> Self {
*self
}
}
impl<E: Event> fmt::Display for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
<Self as fmt::Debug>::fmt(self, f)
}
}
impl<E: Event> fmt::Debug for EventId<E> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"event<{}>#{}",
core::any::type_name::<E>().split("::").last().unwrap(),
self.id,
)
}
}
impl<E: Event> PartialEq for EventId<E> {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl<E: Event> Eq for EventId<E> {}
impl<E: Event> PartialOrd for EventId<E> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<E: Event> Ord for EventId<E> {
fn cmp(&self, other: &Self) -> Ordering {
self.id.cmp(&other.id)
}
}
impl<E: Event> Hash for EventId<E> {
fn hash<H: Hasher>(&self, state: &mut H) {
Hash::hash(&self.id, state);
}
}
#[derive(Debug)]
#[cfg_attr(feature = "bevy_reflect", derive(Reflect))]
pub(crate) struct EventInstance<E: Event> {
pub event_id: EventId<E>,
pub event: E,
}