mirror of
https://github.com/bevyengine/bevy
synced 2024-12-22 19:13:08 +00:00
dfdf2b9ea4
This is an implementation of RFC #51: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md Note that the implementation strategy is different from the one outlined in that RFC, because two-phase animation has now landed. # Objective Bevy needs animation blending. The RFC for this is [RFC 51]. ## Solution This is an implementation of the RFC. Note that the implementation strategy is different from the one outlined there, because two-phase animation has now landed. This is just a draft to get the conversation started. Currently we're missing a few things: - [x] A fully-fleshed-out mechanism for transitions - [x] A serialization format for `AnimationGraph`s - [x] Examples are broken, other than `animated_fox` - [x] Documentation --- ## Changelog ### Added * The `AnimationPlayer` has been reworked to support blending multiple animations together through an `AnimationGraph`, and as such will no longer function unless a `Handle<AnimationGraph>` has been added to the entity containing the player. See [RFC 51] for more details. * Transition functionality has moved from the `AnimationPlayer` to a new component, `AnimationTransitions`, which works in tandem with the `AnimationGraph`. ## Migration Guide * `AnimationPlayer`s can no longer play animations by themselves and need to be paired with a `Handle<AnimationGraph>`. Code that was using `AnimationPlayer` to play animations will need to create an `AnimationGraph` asset first, add a node for the clip (or clips) you want to play, and then supply the index of that node to the `AnimationPlayer`'s `play` method. * The `AnimationPlayer::play_with_transition()` method has been removed and replaced with the `AnimationTransitions` component. If you were previously using `AnimationPlayer::play_with_transition()`, add all animations that you were playing to the `AnimationGraph`, and create an `AnimationTransitions` component to manage the blending between them. [RFC 51]: https://github.com/bevyengine/rfcs/blob/main/rfcs/51-animation-composition.md --------- Co-authored-by: Rob Parrett <robparrett@gmail.com>
1342 lines
48 KiB
Rust
1342 lines
48 KiB
Rust
//! Animation for the game engine Bevy
|
|
|
|
mod animatable;
|
|
mod graph;
|
|
mod transition;
|
|
mod util;
|
|
|
|
use std::cell::RefCell;
|
|
use std::collections::BTreeMap;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::iter;
|
|
use std::ops::{Add, Mul};
|
|
|
|
use bevy_app::{App, Plugin, PostUpdate};
|
|
use bevy_asset::{Asset, AssetApp, Assets, Handle};
|
|
use bevy_core::Name;
|
|
use bevy_ecs::entity::MapEntities;
|
|
use bevy_ecs::prelude::*;
|
|
use bevy_ecs::reflect::ReflectMapEntities;
|
|
use bevy_math::{FloatExt, Quat, Vec3};
|
|
use bevy_reflect::Reflect;
|
|
use bevy_render::mesh::morph::MorphWeights;
|
|
use bevy_time::Time;
|
|
use bevy_transform::{prelude::Transform, TransformSystem};
|
|
use bevy_utils::hashbrown::HashMap;
|
|
use bevy_utils::{
|
|
tracing::{error, trace},
|
|
NoOpHash,
|
|
};
|
|
use fixedbitset::FixedBitSet;
|
|
use graph::{AnimationGraph, AnimationNodeIndex};
|
|
use petgraph::graph::NodeIndex;
|
|
use petgraph::Direction;
|
|
use prelude::{AnimationGraphAssetLoader, AnimationTransitions};
|
|
use sha1_smol::Sha1;
|
|
use thread_local::ThreadLocal;
|
|
use uuid::Uuid;
|
|
|
|
#[allow(missing_docs)]
|
|
pub mod prelude {
|
|
#[doc(hidden)]
|
|
pub use crate::{
|
|
animatable::*, graph::*, transition::*, AnimationClip, AnimationPlayer, AnimationPlugin,
|
|
Interpolation, Keyframes, VariableCurve,
|
|
};
|
|
}
|
|
|
|
use crate::transition::{advance_transitions, expire_completed_transitions};
|
|
|
|
/// The [UUID namespace] of animation targets (e.g. bones).
|
|
///
|
|
/// [UUID namespace]: https://en.wikipedia.org/wiki/Universally_unique_identifier#Versions_3_and_5_(namespace_name-based)
|
|
pub static ANIMATION_TARGET_NAMESPACE: Uuid = Uuid::from_u128(0x3179f519d9274ff2b5966fd077023911);
|
|
|
|
/// List of keyframes for one of the attribute of a [`Transform`].
|
|
#[derive(Reflect, Clone, Debug)]
|
|
pub enum Keyframes {
|
|
/// Keyframes for rotation.
|
|
Rotation(Vec<Quat>),
|
|
/// Keyframes for translation.
|
|
Translation(Vec<Vec3>),
|
|
/// Keyframes for scale.
|
|
Scale(Vec<Vec3>),
|
|
/// Keyframes for morph target weights.
|
|
///
|
|
/// Note that in `.0`, each contiguous `target_count` values is a single
|
|
/// keyframe representing the weight values at given keyframe.
|
|
///
|
|
/// This follows the [glTF design].
|
|
///
|
|
/// [glTF design]: https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html#animations
|
|
Weights(Vec<f32>),
|
|
}
|
|
|
|
impl Keyframes {
|
|
/// Returns the number of keyframes.
|
|
pub fn len(&self) -> usize {
|
|
match self {
|
|
Keyframes::Weights(vec) => vec.len(),
|
|
Keyframes::Translation(vec) | Keyframes::Scale(vec) => vec.len(),
|
|
Keyframes::Rotation(vec) => vec.len(),
|
|
}
|
|
}
|
|
|
|
/// Returns true if the number of keyframes is zero.
|
|
pub fn is_empty(&self) -> bool {
|
|
self.len() == 0
|
|
}
|
|
}
|
|
|
|
/// Describes how an attribute of a [`Transform`] or [`MorphWeights`] should be animated.
|
|
///
|
|
/// `keyframe_timestamps` and `keyframes` should have the same length.
|
|
#[derive(Reflect, Clone, Debug)]
|
|
pub struct VariableCurve {
|
|
/// Timestamp for each of the keyframes.
|
|
pub keyframe_timestamps: Vec<f32>,
|
|
/// List of the keyframes.
|
|
///
|
|
/// The representation will depend on the interpolation type of this curve:
|
|
///
|
|
/// - for `Interpolation::Step` and `Interpolation::Linear`, each keyframe is a single value
|
|
/// - for `Interpolation::CubicSpline`, each keyframe is made of three values for `tangent_in`,
|
|
/// `keyframe_value` and `tangent_out`
|
|
pub keyframes: Keyframes,
|
|
/// Interpolation method to use between keyframes.
|
|
pub interpolation: Interpolation,
|
|
}
|
|
|
|
impl VariableCurve {
|
|
/// Find the index of the keyframe at or before the current time.
|
|
///
|
|
/// Returns [`None`] if the curve is finished or not yet started.
|
|
/// To be more precise, this returns [`None`] if the frame is at or past the last keyframe:
|
|
/// we cannot get the *next* keyframe to interpolate to in that case.
|
|
pub fn find_current_keyframe(&self, seek_time: f32) -> Option<usize> {
|
|
// An Ok(keyframe_index) result means an exact result was found by binary search
|
|
// An Err result means the keyframe was not found, and the index is the keyframe
|
|
// PERF: finding the current keyframe can be optimised
|
|
let search_result = self
|
|
.keyframe_timestamps
|
|
.binary_search_by(|probe| probe.partial_cmp(&seek_time).unwrap());
|
|
|
|
// Subtract one for zero indexing!
|
|
let last_keyframe = self.keyframes.len() - 1;
|
|
|
|
// We want to find the index of the keyframe before the current time
|
|
// If the keyframe is past the second-to-last keyframe, the animation cannot be interpolated.
|
|
let step_start = match search_result {
|
|
// An exact match was found, and it is the last keyframe (or something has gone terribly wrong).
|
|
// This means that the curve is finished.
|
|
Ok(n) if n >= last_keyframe => return None,
|
|
// An exact match was found, and it is not the last keyframe.
|
|
Ok(i) => i,
|
|
// No exact match was found, and the seek_time is before the start of the animation.
|
|
// This occurs because the binary search returns the index of where we could insert a value
|
|
// without disrupting the order of the vector.
|
|
// If the value is less than the first element, the index will be 0.
|
|
Err(0) => return None,
|
|
// No exact match was found, and it was after the last keyframe.
|
|
// The curve is finished.
|
|
Err(n) if n > last_keyframe => return None,
|
|
// No exact match was found, so return the previous keyframe to interpolate from.
|
|
Err(i) => i - 1,
|
|
};
|
|
|
|
// Consumers need to be able to interpolate between the return keyframe and the next
|
|
assert!(step_start < self.keyframe_timestamps.len());
|
|
|
|
Some(step_start)
|
|
}
|
|
}
|
|
|
|
/// Interpolation method to use between keyframes.
|
|
#[derive(Reflect, Clone, Debug)]
|
|
pub enum Interpolation {
|
|
/// Linear interpolation between the two closest keyframes.
|
|
Linear,
|
|
/// Step interpolation, the value of the start keyframe is used.
|
|
Step,
|
|
/// Cubic spline interpolation. The value of the two closest keyframes is used, with the out
|
|
/// tangent of the start keyframe and the in tangent of the end keyframe.
|
|
CubicSpline,
|
|
}
|
|
|
|
/// A list of [`VariableCurve`]s and the [`AnimationTargetId`]s to which they
|
|
/// apply.
|
|
///
|
|
/// Because animation clips refer to targets by UUID, they can target any
|
|
/// [`AnimationTarget`] with that ID.
|
|
#[derive(Asset, Reflect, Clone, Debug, Default)]
|
|
pub struct AnimationClip {
|
|
curves: AnimationCurves,
|
|
duration: f32,
|
|
}
|
|
|
|
/// A mapping from [`AnimationTargetId`] (e.g. bone in a skinned mesh) to the
|
|
/// animation curves.
|
|
pub type AnimationCurves = HashMap<AnimationTargetId, Vec<VariableCurve>, NoOpHash>;
|
|
|
|
/// A unique [UUID] for an animation target (e.g. bone in a skinned mesh).
|
|
///
|
|
/// The [`AnimationClip`] asset and the [`AnimationTarget`] component both use
|
|
/// this to refer to targets (e.g. bones in a skinned mesh) to be animated.
|
|
///
|
|
/// When importing an armature or an animation clip, asset loaders typically use
|
|
/// the full path name from the armature to the bone to generate these UUIDs.
|
|
/// The ID is unique to the full path name and based only on the names. So, for
|
|
/// example, any imported armature with a bone at the root named `Hips` will
|
|
/// assign the same [`AnimationTargetId`] to its root bone. Likewise, any
|
|
/// imported animation clip that animates a root bone named `Hips` will
|
|
/// reference the same [`AnimationTargetId`]. Any animation is playable on any
|
|
/// armature as long as the bone names match, which allows for easy animation
|
|
/// retargeting.
|
|
///
|
|
/// Note that asset loaders generally use the *full* path name to generate the
|
|
/// [`AnimationTargetId`]. Thus a bone named `Chest` directly connected to a
|
|
/// bone named `Hips` will have a different ID from a bone named `Chest` that's
|
|
/// connected to a bone named `Stomach`.
|
|
///
|
|
/// [UUID]: https://en.wikipedia.org/wiki/Universally_unique_identifier
|
|
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Reflect, Debug)]
|
|
pub struct AnimationTargetId(pub Uuid);
|
|
|
|
impl Hash for AnimationTargetId {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
let (hi, lo) = self.0.as_u64_pair();
|
|
state.write_u64(hi ^ lo);
|
|
}
|
|
}
|
|
|
|
/// An entity that can be animated by an [`AnimationPlayer`].
|
|
///
|
|
/// These are frequently referred to as *bones* or *joints*, because they often
|
|
/// refer to individually-animatable parts of an armature.
|
|
///
|
|
/// Asset loaders for armatures are responsible for adding these as necessary.
|
|
/// Typically, they're generated from hashed versions of the entire name path
|
|
/// from the root of the armature to the bone. See the [`AnimationTargetId`]
|
|
/// documentation for more details.
|
|
///
|
|
/// By convention, asset loaders add [`AnimationTarget`] components to the
|
|
/// descendants of an [`AnimationPlayer`], as well as to the [`AnimationPlayer`]
|
|
/// entity itself, but Bevy doesn't require this in any way. So, for example,
|
|
/// it's entirely possible for an [`AnimationPlayer`] to animate a target that
|
|
/// it isn't an ancestor of. If you add a new bone to or delete a bone from an
|
|
/// armature at runtime, you may want to update the [`AnimationTarget`]
|
|
/// component as appropriate, as Bevy won't do this automatically.
|
|
///
|
|
/// Note that each entity can only be animated by one animation player at a
|
|
/// time. However, you can change [`AnimationTarget`]'s `player` property at
|
|
/// runtime to change which player is responsible for animating the entity.
|
|
#[derive(Clone, Component, Reflect)]
|
|
#[reflect(Component, MapEntities)]
|
|
pub struct AnimationTarget {
|
|
/// The ID of this animation target.
|
|
///
|
|
/// Typically, this is derived from the path.
|
|
pub id: AnimationTargetId,
|
|
|
|
/// The entity containing the [`AnimationPlayer`].
|
|
pub player: Entity,
|
|
}
|
|
|
|
impl AnimationClip {
|
|
#[inline]
|
|
/// [`VariableCurve`]s for each animation target. Indexed by the [`AnimationTargetId`].
|
|
pub fn curves(&self) -> &AnimationCurves {
|
|
&self.curves
|
|
}
|
|
|
|
/// Gets the curves for a single animation target.
|
|
///
|
|
/// Returns `None` if this clip doesn't animate the target.
|
|
#[inline]
|
|
pub fn curves_for_target(
|
|
&self,
|
|
target_id: AnimationTargetId,
|
|
) -> Option<&'_ Vec<VariableCurve>> {
|
|
self.curves.get(&target_id)
|
|
}
|
|
|
|
/// Duration of the clip, represented in seconds.
|
|
#[inline]
|
|
pub fn duration(&self) -> f32 {
|
|
self.duration
|
|
}
|
|
|
|
/// Adds a [`VariableCurve`] to an [`AnimationTarget`] named by an
|
|
/// [`AnimationTargetId`].
|
|
///
|
|
/// If the curve extends beyond the current duration of this clip, this
|
|
/// method lengthens this clip to include the entire time span that the
|
|
/// curve covers.
|
|
pub fn add_curve_to_target(&mut self, target_id: AnimationTargetId, curve: VariableCurve) {
|
|
// Update the duration of the animation by this curve duration if it's longer
|
|
self.duration = self
|
|
.duration
|
|
.max(*curve.keyframe_timestamps.last().unwrap_or(&0.0));
|
|
self.curves.entry(target_id).or_default().push(curve);
|
|
}
|
|
}
|
|
|
|
/// Repetition behavior of an animation.
|
|
#[derive(Reflect, Debug, PartialEq, Eq, Copy, Clone, Default)]
|
|
pub enum RepeatAnimation {
|
|
/// The animation will finish after running once.
|
|
#[default]
|
|
Never,
|
|
/// The animation will finish after running "n" times.
|
|
Count(u32),
|
|
/// The animation will never finish.
|
|
Forever,
|
|
}
|
|
|
|
/// An animation that an [`AnimationPlayer`] is currently either playing or was
|
|
/// playing, but is presently paused.
|
|
///
|
|
/// An stopped animation is considered no longer active.
|
|
#[derive(Debug, Reflect)]
|
|
pub struct ActiveAnimation {
|
|
/// The factor by which the weight from the [`AnimationGraph`] is multiplied.
|
|
weight: f32,
|
|
/// The actual weight of this animation this frame, taking the
|
|
/// [`AnimationGraph`] into account.
|
|
computed_weight: f32,
|
|
repeat: RepeatAnimation,
|
|
speed: f32,
|
|
/// Total time the animation has been played.
|
|
///
|
|
/// Note: Time does not increase when the animation is paused or after it has completed.
|
|
elapsed: f32,
|
|
/// The timestamp inside of the animation clip.
|
|
///
|
|
/// Note: This will always be in the range [0.0, animation clip duration]
|
|
seek_time: f32,
|
|
/// Number of times the animation has completed.
|
|
/// If the animation is playing in reverse, this increments when the animation passes the start.
|
|
completions: u32,
|
|
paused: bool,
|
|
}
|
|
|
|
impl Default for ActiveAnimation {
|
|
fn default() -> Self {
|
|
Self {
|
|
weight: 1.0,
|
|
computed_weight: 1.0,
|
|
repeat: RepeatAnimation::default(),
|
|
speed: 1.0,
|
|
elapsed: 0.0,
|
|
seek_time: 0.0,
|
|
completions: 0,
|
|
paused: false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl ActiveAnimation {
|
|
/// Check if the animation has finished, based on its repetition behavior and the number of times it has repeated.
|
|
///
|
|
/// Note: An animation with `RepeatAnimation::Forever` will never finish.
|
|
#[inline]
|
|
pub fn is_finished(&self) -> bool {
|
|
match self.repeat {
|
|
RepeatAnimation::Forever => false,
|
|
RepeatAnimation::Never => self.completions >= 1,
|
|
RepeatAnimation::Count(n) => self.completions >= n,
|
|
}
|
|
}
|
|
|
|
/// Update the animation given the delta time and the duration of the clip being played.
|
|
#[inline]
|
|
fn update(&mut self, delta: f32, clip_duration: f32) {
|
|
if self.is_finished() {
|
|
return;
|
|
}
|
|
|
|
self.elapsed += delta;
|
|
self.seek_time += delta * self.speed;
|
|
|
|
let over_time = self.speed > 0.0 && self.seek_time >= clip_duration;
|
|
let under_time = self.speed < 0.0 && self.seek_time < 0.0;
|
|
|
|
if over_time || under_time {
|
|
self.completions += 1;
|
|
|
|
if self.is_finished() {
|
|
return;
|
|
}
|
|
}
|
|
if self.seek_time >= clip_duration {
|
|
self.seek_time %= clip_duration;
|
|
}
|
|
// Note: assumes delta is never lower than -clip_duration
|
|
if self.seek_time < 0.0 {
|
|
self.seek_time += clip_duration;
|
|
}
|
|
}
|
|
|
|
/// Reset back to the initial state as if no time has elapsed.
|
|
pub fn replay(&mut self) {
|
|
self.completions = 0;
|
|
self.elapsed = 0.0;
|
|
self.seek_time = 0.0;
|
|
}
|
|
|
|
/// Returns the current weight of this animation.
|
|
pub fn weight(&self) -> f32 {
|
|
self.weight
|
|
}
|
|
|
|
/// Sets the weight of this animation.
|
|
pub fn set_weight(&mut self, weight: f32) {
|
|
self.weight = weight;
|
|
}
|
|
|
|
/// Pause the animation.
|
|
pub fn pause(&mut self) -> &mut Self {
|
|
self.paused = true;
|
|
self
|
|
}
|
|
|
|
/// Unpause the animation.
|
|
pub fn resume(&mut self) -> &mut Self {
|
|
self.paused = false;
|
|
self
|
|
}
|
|
|
|
/// Returns true if this animation is currently paused.
|
|
///
|
|
/// Note that paused animations are still [`ActiveAnimation`]s.
|
|
#[inline]
|
|
pub fn is_paused(&self) -> bool {
|
|
self.paused
|
|
}
|
|
|
|
/// Sets the repeat mode for this playing animation.
|
|
pub fn set_repeat(&mut self, repeat: RepeatAnimation) -> &mut Self {
|
|
self.repeat = repeat;
|
|
self
|
|
}
|
|
|
|
/// Marks this animation as repeating forever.
|
|
pub fn repeat(&mut self) -> &mut Self {
|
|
self.set_repeat(RepeatAnimation::Forever)
|
|
}
|
|
|
|
/// Returns the repeat mode assigned to this active animation.
|
|
pub fn repeat_mode(&self) -> RepeatAnimation {
|
|
self.repeat
|
|
}
|
|
|
|
/// Returns the number of times this animation has completed.
|
|
pub fn completions(&self) -> u32 {
|
|
self.completions
|
|
}
|
|
|
|
/// Returns true if the animation is playing in reverse.
|
|
pub fn is_playback_reversed(&self) -> bool {
|
|
self.speed < 0.0
|
|
}
|
|
|
|
/// Returns the speed of the animation playback.
|
|
pub fn speed(&self) -> f32 {
|
|
self.speed
|
|
}
|
|
|
|
/// Sets the speed of the animation playback.
|
|
pub fn set_speed(&mut self, speed: f32) -> &mut Self {
|
|
self.speed = speed;
|
|
self
|
|
}
|
|
|
|
/// Returns the amount of time the animation has been playing.
|
|
pub fn elapsed(&self) -> f32 {
|
|
self.elapsed
|
|
}
|
|
|
|
/// Returns the seek time of the animation.
|
|
///
|
|
/// This is nonnegative and no more than the clip duration.
|
|
pub fn seek_time(&self) -> f32 {
|
|
self.seek_time
|
|
}
|
|
|
|
/// Seeks to a specific time in the animation.
|
|
pub fn seek_to(&mut self, seek_time: f32) -> &mut Self {
|
|
self.seek_time = seek_time;
|
|
self
|
|
}
|
|
|
|
/// Seeks to the beginning of the animation.
|
|
pub fn rewind(&mut self) -> &mut Self {
|
|
self.seek_time = 0.0;
|
|
self
|
|
}
|
|
}
|
|
|
|
/// Animation controls
|
|
#[derive(Component, Default, Reflect)]
|
|
#[reflect(Component)]
|
|
pub struct AnimationPlayer {
|
|
/// We use a `BTreeMap` instead of a `HashMap` here to ensure a consistent
|
|
/// ordering when applying the animations.
|
|
active_animations: BTreeMap<AnimationNodeIndex, ActiveAnimation>,
|
|
blend_weights: HashMap<AnimationNodeIndex, f32>,
|
|
}
|
|
|
|
/// The components that we might need to read or write during animation of each
|
|
/// animation target.
|
|
struct AnimationTargetContext<'a> {
|
|
entity: Entity,
|
|
target: &'a AnimationTarget,
|
|
name: Option<&'a Name>,
|
|
transform: Option<Mut<'a, Transform>>,
|
|
morph_weights: Option<Mut<'a, MorphWeights>>,
|
|
}
|
|
|
|
/// Information needed during the traversal of the animation graph in
|
|
/// [`advance_animations`].
|
|
#[derive(Default)]
|
|
pub struct AnimationGraphEvaluator {
|
|
/// The stack used for the depth-first search of the graph.
|
|
dfs_stack: Vec<NodeIndex>,
|
|
/// The list of visited nodes during the depth-first traversal.
|
|
dfs_visited: FixedBitSet,
|
|
/// Accumulated weights for each node.
|
|
weights: Vec<f32>,
|
|
}
|
|
|
|
thread_local! {
|
|
/// A cached per-thread copy of the graph evaluator.
|
|
///
|
|
/// Caching the evaluator lets us save allocation traffic from frame to
|
|
/// frame.
|
|
static ANIMATION_GRAPH_EVALUATOR: RefCell<AnimationGraphEvaluator> =
|
|
RefCell::new(AnimationGraphEvaluator::default());
|
|
}
|
|
|
|
impl AnimationPlayer {
|
|
/// Start playing an animation, restarting it if necessary.
|
|
pub fn start(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
|
|
self.active_animations.entry(animation).or_default()
|
|
}
|
|
|
|
/// Start playing an animation, unless the requested animation is already playing.
|
|
pub fn play(&mut self, animation: AnimationNodeIndex) -> &mut ActiveAnimation {
|
|
let playing_animation = self.active_animations.entry(animation).or_default();
|
|
playing_animation.weight = 1.0;
|
|
playing_animation
|
|
}
|
|
|
|
/// Stops playing the given animation, removing it from the list of playing
|
|
/// animations.
|
|
pub fn stop(&mut self, animation: AnimationNodeIndex) -> &mut Self {
|
|
self.active_animations.remove(&animation);
|
|
self
|
|
}
|
|
|
|
/// Stops all currently-playing animations.
|
|
pub fn stop_all(&mut self) -> &mut Self {
|
|
self.active_animations.clear();
|
|
self
|
|
}
|
|
|
|
/// Iterates through all animations that this [`AnimationPlayer`] is
|
|
/// currently playing.
|
|
pub fn playing_animations(
|
|
&self,
|
|
) -> impl Iterator<Item = (&AnimationNodeIndex, &ActiveAnimation)> {
|
|
self.active_animations.iter()
|
|
}
|
|
|
|
/// Iterates through all animations that this [`AnimationPlayer`] is
|
|
/// currently playing, mutably.
|
|
pub fn playing_animations_mut(
|
|
&mut self,
|
|
) -> impl Iterator<Item = (&AnimationNodeIndex, &mut ActiveAnimation)> {
|
|
self.active_animations.iter_mut()
|
|
}
|
|
|
|
/// Check if the given animation node is being played.
|
|
pub fn is_playing_animation(&self, animation: AnimationNodeIndex) -> bool {
|
|
self.active_animations.contains_key(&animation)
|
|
}
|
|
|
|
/// Check if all playing animations have finished, according to the repetition behavior.
|
|
pub fn all_finished(&self) -> bool {
|
|
self.active_animations
|
|
.values()
|
|
.all(|playing_animation| playing_animation.is_finished())
|
|
}
|
|
|
|
/// Check if all playing animations are paused.
|
|
#[doc(alias = "is_paused")]
|
|
pub fn all_paused(&self) -> bool {
|
|
self.active_animations
|
|
.values()
|
|
.all(|playing_animation| playing_animation.is_paused())
|
|
}
|
|
|
|
/// Resume all playing animations.
|
|
#[doc(alias = "pause")]
|
|
pub fn pause_all(&mut self) -> &mut Self {
|
|
for (_, playing_animation) in self.playing_animations_mut() {
|
|
playing_animation.pause();
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Resume all active animations.
|
|
#[doc(alias = "resume")]
|
|
pub fn resume_all(&mut self) -> &mut Self {
|
|
for (_, playing_animation) in self.playing_animations_mut() {
|
|
playing_animation.resume();
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Rewinds all active animations.
|
|
#[doc(alias = "rewind")]
|
|
pub fn rewind_all(&mut self) -> &mut Self {
|
|
for (_, playing_animation) in self.playing_animations_mut() {
|
|
playing_animation.rewind();
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Multiplies the speed of all active animations by the given factor.
|
|
#[doc(alias = "set_speed")]
|
|
pub fn adjust_speeds(&mut self, factor: f32) -> &mut Self {
|
|
for (_, playing_animation) in self.playing_animations_mut() {
|
|
let new_speed = playing_animation.speed() * factor;
|
|
playing_animation.set_speed(new_speed);
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Seeks all active animations forward or backward by the same amount.
|
|
///
|
|
/// To seek forward, pass a positive value; to seek negative, pass a
|
|
/// negative value. Values below 0.0 or beyond the end of the animation clip
|
|
/// are clamped appropriately.
|
|
#[doc(alias = "seek_to")]
|
|
pub fn seek_all_by(&mut self, amount: f32) -> &mut Self {
|
|
for (_, playing_animation) in self.playing_animations_mut() {
|
|
let new_time = playing_animation.seek_time();
|
|
playing_animation.seek_to(new_time + amount);
|
|
}
|
|
self
|
|
}
|
|
|
|
/// Returns the [`ActiveAnimation`] associated with the given animation
|
|
/// node if it's currently playing.
|
|
///
|
|
/// If the animation isn't currently active, returns `None`.
|
|
pub fn animation(&self, animation: AnimationNodeIndex) -> Option<&ActiveAnimation> {
|
|
self.active_animations.get(&animation)
|
|
}
|
|
|
|
/// Returns a mutable reference to the [`ActiveAnimation`] associated with
|
|
/// the given animation node if it's currently active.
|
|
///
|
|
/// If the animation isn't currently active, returns `None`.
|
|
pub fn animation_mut(&mut self, animation: AnimationNodeIndex) -> Option<&mut ActiveAnimation> {
|
|
self.active_animations.get_mut(&animation)
|
|
}
|
|
|
|
/// Returns true if the animation is currently playing or paused, or false
|
|
/// if the animation is stopped.
|
|
pub fn animation_is_playing(&self, animation: AnimationNodeIndex) -> bool {
|
|
self.active_animations.contains_key(&animation)
|
|
}
|
|
}
|
|
|
|
/// A system that advances the time for all playing animations.
|
|
pub fn advance_animations(
|
|
time: Res<Time>,
|
|
animation_clips: Res<Assets<AnimationClip>>,
|
|
animation_graphs: Res<Assets<AnimationGraph>>,
|
|
mut players: Query<(&mut AnimationPlayer, &Handle<AnimationGraph>)>,
|
|
animation_graph_evaluator: Local<ThreadLocal<RefCell<AnimationGraphEvaluator>>>,
|
|
) {
|
|
let delta_seconds = time.delta_seconds();
|
|
players
|
|
.par_iter_mut()
|
|
.for_each(|(mut player, graph_handle)| {
|
|
let Some(animation_graph) = animation_graphs.get(graph_handle) else {
|
|
return;
|
|
};
|
|
|
|
// Tick animations, and schedule them.
|
|
//
|
|
// We use a thread-local here so we can reuse allocations across
|
|
// frames.
|
|
let mut evaluator = animation_graph_evaluator.get_or_default().borrow_mut();
|
|
|
|
let AnimationPlayer {
|
|
ref mut active_animations,
|
|
ref blend_weights,
|
|
..
|
|
} = *player;
|
|
|
|
// Reset our state.
|
|
evaluator.reset(animation_graph.root, animation_graph.graph.node_count());
|
|
|
|
while let Some(node_index) = evaluator.dfs_stack.pop() {
|
|
// Skip if we've already visited this node.
|
|
if evaluator.dfs_visited.put(node_index.index()) {
|
|
continue;
|
|
}
|
|
|
|
let node = &animation_graph[node_index];
|
|
|
|
// Calculate weight from the graph.
|
|
let mut weight = node.weight;
|
|
for parent_index in animation_graph
|
|
.graph
|
|
.neighbors_directed(node_index, Direction::Incoming)
|
|
{
|
|
weight *= animation_graph[parent_index].weight;
|
|
}
|
|
evaluator.weights[node_index.index()] = weight;
|
|
|
|
if let Some(active_animation) = active_animations.get_mut(&node_index) {
|
|
// Tick the animation if necessary.
|
|
if !active_animation.paused {
|
|
if let Some(ref clip_handle) = node.clip {
|
|
if let Some(clip) = animation_clips.get(clip_handle) {
|
|
active_animation.update(delta_seconds, clip.duration);
|
|
}
|
|
}
|
|
}
|
|
|
|
weight *= active_animation.weight;
|
|
} else if let Some(&blend_weight) = blend_weights.get(&node_index) {
|
|
weight *= blend_weight;
|
|
}
|
|
|
|
// Write in the computed weight.
|
|
if let Some(active_animation) = active_animations.get_mut(&node_index) {
|
|
active_animation.computed_weight = weight;
|
|
}
|
|
|
|
// Push children.
|
|
evaluator.dfs_stack.extend(
|
|
animation_graph
|
|
.graph
|
|
.neighbors_directed(node_index, Direction::Outgoing),
|
|
);
|
|
}
|
|
});
|
|
}
|
|
|
|
/// A system that modifies animation targets (e.g. bones in a skinned mesh)
|
|
/// according to the currently-playing animation.
|
|
pub fn animate_targets(
|
|
clips: Res<Assets<AnimationClip>>,
|
|
graphs: Res<Assets<AnimationGraph>>,
|
|
players: Query<(&AnimationPlayer, &Handle<AnimationGraph>)>,
|
|
mut targets: Query<(
|
|
Entity,
|
|
&AnimationTarget,
|
|
Option<&Name>,
|
|
AnyOf<(&mut Transform, &mut MorphWeights)>,
|
|
)>,
|
|
) {
|
|
// We use two queries here: one read-only query for animation players and
|
|
// one read-write query for animation targets (e.g. bones). The
|
|
// `AnimationPlayer` query is read-only shared memory accessible from all
|
|
// animation targets, which are evaluated in parallel.
|
|
|
|
// Iterate over all animation targets in parallel.
|
|
targets
|
|
.par_iter_mut()
|
|
.for_each(|(id, target, name, (transform, morph_weights))| {
|
|
let Ok((animation_player, animation_graph_handle)) = players.get(target.player) else {
|
|
trace!(
|
|
"Either an animation player {:?} or a graph was missing for the target \
|
|
entity {:?} ({:?}); no animations will play this frame",
|
|
target.player,
|
|
id,
|
|
name,
|
|
);
|
|
return;
|
|
};
|
|
|
|
// The graph might not have loaded yet. Safely bail.
|
|
let Some(animation_graph) = graphs.get(animation_graph_handle) else {
|
|
return;
|
|
};
|
|
|
|
let mut target_context = AnimationTargetContext {
|
|
entity: id,
|
|
target,
|
|
name,
|
|
transform,
|
|
morph_weights,
|
|
};
|
|
|
|
// Apply the animations one after another. The way we accumulate
|
|
// weights ensures that the order we apply them in doesn't matter.
|
|
//
|
|
// Proof: Consider three animations A₀, A₁, A₂, … with weights w₀,
|
|
// w₁, w₂, … respectively. We seek the value:
|
|
//
|
|
// A₀w₀ + A₁w₁ + A₂w₂ + ⋯
|
|
//
|
|
// Defining lerp(a, b, t) = a + t(b - a), we have:
|
|
//
|
|
// ⎛ ⎛ w₁ ⎞ w₂ ⎞
|
|
// A₀w₀ + A₁w₁ + A₂w₂ + ⋯ = ⋯ lerp⎜lerp⎜A₀, A₁, ⎯⎯⎯⎯⎯⎯⎯⎯⎟, A₂, ⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎟ ⋯
|
|
// ⎝ ⎝ w₀ + w₁⎠ w₀ + w₁ + w₂⎠
|
|
//
|
|
// Each step of the following loop corresponds to one of the lerp
|
|
// operations above.
|
|
let mut total_weight = 0.0;
|
|
for (&animation_graph_node_index, active_animation) in
|
|
animation_player.active_animations.iter()
|
|
{
|
|
if active_animation.weight == 0.0 {
|
|
continue;
|
|
}
|
|
|
|
let Some(clip) = animation_graph
|
|
.get(animation_graph_node_index)
|
|
.and_then(|animation_graph_node| animation_graph_node.clip.as_ref())
|
|
.and_then(|animation_clip_handle| clips.get(animation_clip_handle))
|
|
else {
|
|
continue;
|
|
};
|
|
|
|
let Some(curves) = clip.curves_for_target(target_context.target.id) else {
|
|
continue;
|
|
};
|
|
|
|
let weight = active_animation.computed_weight;
|
|
total_weight += weight;
|
|
|
|
target_context.apply(curves, weight / total_weight, active_animation.seek_time);
|
|
}
|
|
});
|
|
}
|
|
|
|
impl AnimationTargetContext<'_> {
|
|
/// Applies a clip to a single animation target according to the
|
|
/// [`AnimationTargetContext`].
|
|
fn apply(&mut self, curves: &[VariableCurve], weight: f32, seek_time: f32) {
|
|
for curve in curves {
|
|
// Some curves have only one keyframe used to set a transform
|
|
if curve.keyframe_timestamps.len() == 1 {
|
|
self.apply_single_keyframe(curve, weight);
|
|
return;
|
|
}
|
|
|
|
// Find the current keyframe
|
|
let Some(step_start) = curve.find_current_keyframe(seek_time) else {
|
|
return;
|
|
};
|
|
|
|
let timestamp_start = curve.keyframe_timestamps[step_start];
|
|
let timestamp_end = curve.keyframe_timestamps[step_start + 1];
|
|
// Compute how far we are through the keyframe, normalized to [0, 1]
|
|
let lerp = f32::inverse_lerp(timestamp_start, timestamp_end, seek_time);
|
|
|
|
self.apply_tweened_keyframe(
|
|
curve,
|
|
step_start,
|
|
lerp,
|
|
weight,
|
|
timestamp_end - timestamp_start,
|
|
);
|
|
}
|
|
}
|
|
|
|
fn apply_single_keyframe(&mut self, curve: &VariableCurve, weight: f32) {
|
|
match &curve.keyframes {
|
|
Keyframes::Rotation(keyframes) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.rotation = transform.rotation.slerp(keyframes[0], weight);
|
|
}
|
|
}
|
|
|
|
Keyframes::Translation(keyframes) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.translation = transform.translation.lerp(keyframes[0], weight);
|
|
}
|
|
}
|
|
|
|
Keyframes::Scale(keyframes) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.scale = transform.scale.lerp(keyframes[0], weight);
|
|
}
|
|
}
|
|
|
|
Keyframes::Weights(keyframes) => {
|
|
let Some(ref mut morphs) = self.morph_weights else {
|
|
error!(
|
|
"Tried to animate morphs on {:?} ({:?}), but no `MorphWeights` was found",
|
|
self.entity, self.name,
|
|
);
|
|
return;
|
|
};
|
|
|
|
let target_count = morphs.weights().len();
|
|
lerp_morph_weights(
|
|
morphs.weights_mut(),
|
|
get_keyframe(target_count, keyframes, 0).iter().copied(),
|
|
weight,
|
|
);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn apply_tweened_keyframe(
|
|
&mut self,
|
|
curve: &VariableCurve,
|
|
step_start: usize,
|
|
lerp: f32,
|
|
weight: f32,
|
|
duration: f32,
|
|
) {
|
|
match (&curve.interpolation, &curve.keyframes) {
|
|
(Interpolation::Step, Keyframes::Rotation(keyframes)) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.rotation = transform.rotation.slerp(keyframes[step_start], weight);
|
|
}
|
|
}
|
|
|
|
(Interpolation::Linear, Keyframes::Rotation(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let rot_start = keyframes[step_start];
|
|
let mut rot_end = keyframes[step_start + 1];
|
|
// Choose the smallest angle for the rotation
|
|
if rot_end.dot(rot_start) < 0.0 {
|
|
rot_end = -rot_end;
|
|
}
|
|
// Rotations are using a spherical linear interpolation
|
|
let rot = rot_start.normalize().slerp(rot_end.normalize(), lerp);
|
|
transform.rotation = transform.rotation.slerp(rot, weight);
|
|
}
|
|
|
|
(Interpolation::CubicSpline, Keyframes::Rotation(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let value_start = keyframes[step_start * 3 + 1];
|
|
let tangent_out_start = keyframes[step_start * 3 + 2];
|
|
let tangent_in_end = keyframes[(step_start + 1) * 3];
|
|
let value_end = keyframes[(step_start + 1) * 3 + 1];
|
|
let result = cubic_spline_interpolation(
|
|
value_start,
|
|
tangent_out_start,
|
|
tangent_in_end,
|
|
value_end,
|
|
lerp,
|
|
duration,
|
|
);
|
|
transform.rotation = transform.rotation.slerp(result.normalize(), weight);
|
|
}
|
|
|
|
(Interpolation::Step, Keyframes::Translation(keyframes)) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.translation =
|
|
transform.translation.lerp(keyframes[step_start], weight);
|
|
}
|
|
}
|
|
|
|
(Interpolation::Linear, Keyframes::Translation(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let translation_start = keyframes[step_start];
|
|
let translation_end = keyframes[step_start + 1];
|
|
let result = translation_start.lerp(translation_end, lerp);
|
|
transform.translation = transform.translation.lerp(result, weight);
|
|
}
|
|
|
|
(Interpolation::CubicSpline, Keyframes::Translation(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let value_start = keyframes[step_start * 3 + 1];
|
|
let tangent_out_start = keyframes[step_start * 3 + 2];
|
|
let tangent_in_end = keyframes[(step_start + 1) * 3];
|
|
let value_end = keyframes[(step_start + 1) * 3 + 1];
|
|
let result = cubic_spline_interpolation(
|
|
value_start,
|
|
tangent_out_start,
|
|
tangent_in_end,
|
|
value_end,
|
|
lerp,
|
|
duration,
|
|
);
|
|
transform.translation = transform.translation.lerp(result, weight);
|
|
}
|
|
|
|
(Interpolation::Step, Keyframes::Scale(keyframes)) => {
|
|
if let Some(ref mut transform) = self.transform {
|
|
transform.scale = transform.scale.lerp(keyframes[step_start], weight);
|
|
}
|
|
}
|
|
|
|
(Interpolation::Linear, Keyframes::Scale(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let scale_start = keyframes[step_start];
|
|
let scale_end = keyframes[step_start + 1];
|
|
let result = scale_start.lerp(scale_end, lerp);
|
|
transform.scale = transform.scale.lerp(result, weight);
|
|
}
|
|
|
|
(Interpolation::CubicSpline, Keyframes::Scale(keyframes)) => {
|
|
let Some(ref mut transform) = self.transform else {
|
|
return;
|
|
};
|
|
|
|
let value_start = keyframes[step_start * 3 + 1];
|
|
let tangent_out_start = keyframes[step_start * 3 + 2];
|
|
let tangent_in_end = keyframes[(step_start + 1) * 3];
|
|
let value_end = keyframes[(step_start + 1) * 3 + 1];
|
|
let result = cubic_spline_interpolation(
|
|
value_start,
|
|
tangent_out_start,
|
|
tangent_in_end,
|
|
value_end,
|
|
lerp,
|
|
duration,
|
|
);
|
|
transform.scale = transform.scale.lerp(result, weight);
|
|
}
|
|
|
|
(Interpolation::Step, Keyframes::Weights(keyframes)) => {
|
|
let Some(ref mut morphs) = self.morph_weights else {
|
|
return;
|
|
};
|
|
|
|
let target_count = morphs.weights().len();
|
|
let morph_start = get_keyframe(target_count, keyframes, step_start);
|
|
lerp_morph_weights(morphs.weights_mut(), morph_start.iter().copied(), weight);
|
|
}
|
|
|
|
(Interpolation::Linear, Keyframes::Weights(keyframes)) => {
|
|
let Some(ref mut morphs) = self.morph_weights else {
|
|
return;
|
|
};
|
|
|
|
let target_count = morphs.weights().len();
|
|
let morph_start = get_keyframe(target_count, keyframes, step_start);
|
|
let morph_end = get_keyframe(target_count, keyframes, step_start + 1);
|
|
let result = morph_start
|
|
.iter()
|
|
.zip(morph_end)
|
|
.map(|(a, b)| a.lerp(*b, lerp));
|
|
lerp_morph_weights(morphs.weights_mut(), result, weight);
|
|
}
|
|
|
|
(Interpolation::CubicSpline, Keyframes::Weights(keyframes)) => {
|
|
let Some(ref mut morphs) = self.morph_weights else {
|
|
return;
|
|
};
|
|
|
|
let target_count = morphs.weights().len();
|
|
let morph_start = get_keyframe(target_count, keyframes, step_start * 3 + 1);
|
|
let tangents_out_start = get_keyframe(target_count, keyframes, step_start * 3 + 2);
|
|
let tangents_in_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3);
|
|
let morph_end = get_keyframe(target_count, keyframes, (step_start + 1) * 3 + 1);
|
|
let result = morph_start
|
|
.iter()
|
|
.zip(tangents_out_start)
|
|
.zip(tangents_in_end)
|
|
.zip(morph_end)
|
|
.map(
|
|
|(((&value_start, &tangent_out_start), &tangent_in_end), &value_end)| {
|
|
cubic_spline_interpolation(
|
|
value_start,
|
|
tangent_out_start,
|
|
tangent_in_end,
|
|
value_end,
|
|
lerp,
|
|
duration,
|
|
)
|
|
},
|
|
);
|
|
lerp_morph_weights(morphs.weights_mut(), result, weight);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Update `weights` based on weights in `keyframe` with a linear interpolation
|
|
/// on `key_lerp`.
|
|
fn lerp_morph_weights(weights: &mut [f32], keyframe: impl Iterator<Item = f32>, key_lerp: f32) {
|
|
let zipped = weights.iter_mut().zip(keyframe);
|
|
for (morph_weight, keyframe) in zipped {
|
|
*morph_weight = morph_weight.lerp(keyframe, key_lerp);
|
|
}
|
|
}
|
|
|
|
/// Extract a keyframe from a list of keyframes by index.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// When `key_index * target_count` is larger than `keyframes`
|
|
///
|
|
/// This happens when `keyframes` is not formatted as described in
|
|
/// [`Keyframes::Weights`]. A possible cause is [`AnimationClip`] not being
|
|
/// meant to be used for the [`MorphWeights`] of the entity it's being applied to.
|
|
fn get_keyframe(target_count: usize, keyframes: &[f32], key_index: usize) -> &[f32] {
|
|
let start = target_count * key_index;
|
|
let end = target_count * (key_index + 1);
|
|
&keyframes[start..end]
|
|
}
|
|
|
|
/// Helper function for cubic spline interpolation.
|
|
fn cubic_spline_interpolation<T>(
|
|
value_start: T,
|
|
tangent_out_start: T,
|
|
tangent_in_end: T,
|
|
value_end: T,
|
|
lerp: f32,
|
|
step_duration: f32,
|
|
) -> T
|
|
where
|
|
T: Mul<f32, Output = T> + Add<Output = T>,
|
|
{
|
|
value_start * (2.0 * lerp.powi(3) - 3.0 * lerp.powi(2) + 1.0)
|
|
+ tangent_out_start * (step_duration) * (lerp.powi(3) - 2.0 * lerp.powi(2) + lerp)
|
|
+ value_end * (-2.0 * lerp.powi(3) + 3.0 * lerp.powi(2))
|
|
+ tangent_in_end * step_duration * (lerp.powi(3) - lerp.powi(2))
|
|
}
|
|
|
|
/// Adds animation support to an app
|
|
#[derive(Default)]
|
|
pub struct AnimationPlugin;
|
|
|
|
impl Plugin for AnimationPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
app.init_asset::<AnimationClip>()
|
|
.init_asset::<AnimationGraph>()
|
|
.init_asset_loader::<AnimationGraphAssetLoader>()
|
|
.register_asset_reflect::<AnimationClip>()
|
|
.register_asset_reflect::<AnimationGraph>()
|
|
.register_type::<AnimationPlayer>()
|
|
.register_type::<AnimationTarget>()
|
|
.register_type::<AnimationTransitions>()
|
|
.register_type::<NodeIndex>()
|
|
.add_systems(
|
|
PostUpdate,
|
|
(
|
|
advance_transitions,
|
|
advance_animations,
|
|
animate_targets,
|
|
expire_completed_transitions,
|
|
)
|
|
.chain()
|
|
.before(TransformSystem::TransformPropagate),
|
|
);
|
|
}
|
|
}
|
|
|
|
impl AnimationTargetId {
|
|
/// Creates a new [`AnimationTargetId`] by hashing a list of names.
|
|
///
|
|
/// Typically, this will be the path from the animation root to the
|
|
/// animation target (e.g. bone) that is to be animated.
|
|
pub fn from_names<'a>(names: impl Iterator<Item = &'a Name>) -> Self {
|
|
let mut sha1 = Sha1::new();
|
|
sha1.update(ANIMATION_TARGET_NAMESPACE.as_bytes());
|
|
names.for_each(|name| sha1.update(name.as_bytes()));
|
|
let hash = sha1.digest().bytes()[0..16].try_into().unwrap();
|
|
Self(*uuid::Builder::from_sha1_bytes(hash).as_uuid())
|
|
}
|
|
|
|
/// Creates a new [`AnimationTargetId`] by hashing a single name.
|
|
pub fn from_name(name: &Name) -> Self {
|
|
Self::from_names(iter::once(name))
|
|
}
|
|
}
|
|
|
|
impl From<&Name> for AnimationTargetId {
|
|
fn from(name: &Name) -> Self {
|
|
AnimationTargetId::from_name(name)
|
|
}
|
|
}
|
|
|
|
impl MapEntities for AnimationTarget {
|
|
fn map_entities<M: EntityMapper>(&mut self, entity_mapper: &mut M) {
|
|
self.player = entity_mapper.map_entity(self.player);
|
|
}
|
|
}
|
|
|
|
impl AnimationGraphEvaluator {
|
|
// Starts a new depth-first search.
|
|
fn reset(&mut self, root: AnimationNodeIndex, node_count: usize) {
|
|
self.dfs_stack.clear();
|
|
self.dfs_stack.push(root);
|
|
|
|
self.dfs_visited.grow(node_count);
|
|
self.dfs_visited.clear();
|
|
|
|
self.weights.clear();
|
|
self.weights.extend(iter::repeat(0.0).take(node_count));
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use crate::VariableCurve;
|
|
use bevy_math::Vec3;
|
|
|
|
fn test_variable_curve() -> VariableCurve {
|
|
let keyframe_timestamps = vec![1.0, 2.0, 3.0, 4.0];
|
|
let keyframes = vec![
|
|
Vec3::ONE * 0.0,
|
|
Vec3::ONE * 3.0,
|
|
Vec3::ONE * 6.0,
|
|
Vec3::ONE * 9.0,
|
|
];
|
|
let interpolation = crate::Interpolation::Linear;
|
|
|
|
let variable_curve = VariableCurve {
|
|
keyframe_timestamps,
|
|
keyframes: crate::Keyframes::Translation(keyframes),
|
|
interpolation,
|
|
};
|
|
|
|
assert!(variable_curve.keyframe_timestamps.len() == variable_curve.keyframes.len());
|
|
|
|
// f32 doesn't impl Ord so we can't easily sort it
|
|
let mut maybe_last_timestamp = None;
|
|
for current_timestamp in &variable_curve.keyframe_timestamps {
|
|
assert!(current_timestamp.is_finite());
|
|
|
|
if let Some(last_timestamp) = maybe_last_timestamp {
|
|
assert!(current_timestamp > last_timestamp);
|
|
}
|
|
maybe_last_timestamp = Some(current_timestamp);
|
|
}
|
|
|
|
variable_curve
|
|
}
|
|
|
|
#[test]
|
|
fn find_current_keyframe_is_in_bounds() {
|
|
let curve = test_variable_curve();
|
|
let min_time = *curve.keyframe_timestamps.first().unwrap();
|
|
// We will always get none at times at or past the second last keyframe
|
|
let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
|
|
let max_time = curve.keyframe_timestamps[second_last_keyframe];
|
|
let elapsed_time = max_time - min_time;
|
|
|
|
let n_keyframes = curve.keyframe_timestamps.len();
|
|
let n_test_points = 5;
|
|
|
|
for i in 0..=n_test_points {
|
|
// Get a value between 0 and 1
|
|
let normalized_time = i as f32 / n_test_points as f32;
|
|
let seek_time = min_time + normalized_time * elapsed_time;
|
|
assert!(seek_time >= min_time);
|
|
assert!(seek_time <= max_time);
|
|
|
|
let maybe_current_keyframe = curve.find_current_keyframe(seek_time);
|
|
assert!(
|
|
maybe_current_keyframe.is_some(),
|
|
"Seek time: {seek_time}, Min time: {min_time}, Max time: {max_time}"
|
|
);
|
|
|
|
// We cannot return the last keyframe,
|
|
// because we want to interpolate between the current and next keyframe
|
|
assert!(maybe_current_keyframe.unwrap() < n_keyframes);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn find_current_keyframe_returns_none_on_unstarted_animations() {
|
|
let curve = test_variable_curve();
|
|
let min_time = *curve.keyframe_timestamps.first().unwrap();
|
|
let seek_time = 0.0;
|
|
assert!(seek_time < min_time);
|
|
|
|
let maybe_keyframe = curve.find_current_keyframe(seek_time);
|
|
assert!(
|
|
maybe_keyframe.is_none(),
|
|
"Seek time: {seek_time}, Minimum time: {min_time}"
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn find_current_keyframe_returns_none_on_finished_animation() {
|
|
let curve = test_variable_curve();
|
|
let max_time = *curve.keyframe_timestamps.last().unwrap();
|
|
|
|
assert!(max_time < f32::INFINITY);
|
|
let maybe_keyframe = curve.find_current_keyframe(f32::INFINITY);
|
|
assert!(maybe_keyframe.is_none());
|
|
|
|
let maybe_keyframe = curve.find_current_keyframe(max_time);
|
|
assert!(maybe_keyframe.is_none());
|
|
}
|
|
|
|
#[test]
|
|
fn second_last_keyframe_is_found_correctly() {
|
|
let curve = test_variable_curve();
|
|
|
|
// Exact time match
|
|
let second_last_keyframe = curve.keyframe_timestamps.len() - 2;
|
|
let second_last_time = curve.keyframe_timestamps[second_last_keyframe];
|
|
let maybe_keyframe = curve.find_current_keyframe(second_last_time);
|
|
assert!(maybe_keyframe.unwrap() == second_last_keyframe);
|
|
|
|
// Inexact match, between the last and second last frames
|
|
let seek_time = second_last_time + 0.001;
|
|
let last_time = curve.keyframe_timestamps[second_last_keyframe + 1];
|
|
assert!(seek_time < last_time);
|
|
|
|
let maybe_keyframe = curve.find_current_keyframe(seek_time);
|
|
assert!(maybe_keyframe.unwrap() == second_last_keyframe);
|
|
}
|
|
|
|
#[test]
|
|
fn exact_keyframe_matches_are_found_correctly() {
|
|
let curve = test_variable_curve();
|
|
let second_last_keyframe = curve.keyframes.len() - 2;
|
|
|
|
for i in 0..=second_last_keyframe {
|
|
let seek_time = curve.keyframe_timestamps[i];
|
|
|
|
let keyframe = curve.find_current_keyframe(seek_time).unwrap();
|
|
assert!(keyframe == i);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn exact_and_inexact_keyframes_correspond() {
|
|
let curve = test_variable_curve();
|
|
|
|
let second_last_keyframe = curve.keyframes.len() - 2;
|
|
|
|
for i in 0..=second_last_keyframe {
|
|
let seek_time = curve.keyframe_timestamps[i];
|
|
|
|
let exact_keyframe = curve.find_current_keyframe(seek_time).unwrap();
|
|
|
|
let inexact_seek_time = seek_time + 0.0001;
|
|
let final_time = *curve.keyframe_timestamps.last().unwrap();
|
|
assert!(inexact_seek_time < final_time);
|
|
|
|
let inexact_keyframe = curve.find_current_keyframe(inexact_seek_time).unwrap();
|
|
|
|
assert!(exact_keyframe == inexact_keyframe);
|
|
}
|
|
}
|
|
}
|