bevy/crates/bevy_ui/src/render/mod.rs
Zachary Harrold d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00

989 lines
37 KiB
Rust

mod pipeline;
mod render_pass;
mod ui_material_pipeline;
pub mod ui_texture_slice_pipeline;
use crate::{
BackgroundColor, BorderColor, CalculatedClip, DefaultUiCamera, Node, Outline,
ResolvedBorderRadius, TargetCamera, UiAntiAlias, UiImage, UiScale,
};
use bevy_app::prelude::*;
use bevy_asset::{load_internal_asset, AssetEvent, AssetId, Assets, Handle};
use bevy_color::{Alpha, ColorToComponents, LinearRgba};
use bevy_core_pipeline::core_2d::graph::{Core2d, Node2d};
use bevy_core_pipeline::core_3d::graph::{Core3d, Node3d};
use bevy_core_pipeline::{core_2d::Camera2d, core_3d::Camera3d};
use bevy_ecs::entity::{EntityHashMap, EntityHashSet};
use bevy_ecs::prelude::*;
use bevy_math::{FloatOrd, Mat4, Rect, URect, UVec4, Vec2, Vec3, Vec3Swizzles, Vec4Swizzles};
use bevy_render::render_phase::ViewSortedRenderPhases;
use bevy_render::texture::TRANSPARENT_IMAGE_HANDLE;
use bevy_render::{
camera::Camera,
render_asset::RenderAssets,
render_graph::{RenderGraph, RunGraphOnViewNode},
render_phase::{sort_phase_system, AddRenderCommand, DrawFunctions},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::Image,
view::{ExtractedView, ViewUniforms},
Extract, RenderApp, RenderSet,
};
use bevy_render::{
render_phase::{PhaseItem, PhaseItemExtraIndex},
texture::GpuImage,
view::ViewVisibility,
ExtractSchedule, Render,
};
use bevy_sprite::TextureAtlasLayout;
use bevy_sprite::{BorderRect, ImageScaleMode, SpriteAssetEvents, TextureAtlas};
#[cfg(feature = "bevy_text")]
use bevy_text::PositionedGlyph;
#[cfg(feature = "bevy_text")]
use bevy_text::Text;
#[cfg(feature = "bevy_text")]
use bevy_text::TextLayoutInfo;
use bevy_transform::components::GlobalTransform;
use bevy_utils::HashMap;
use bytemuck::{Pod, Zeroable};
use core::ops::Range;
use graph::{NodeUi, SubGraphUi};
pub use pipeline::*;
pub use render_pass::*;
pub use ui_material_pipeline::*;
use ui_texture_slice_pipeline::UiTextureSlicerPlugin;
pub mod graph {
use bevy_render::render_graph::{RenderLabel, RenderSubGraph};
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderSubGraph)]
pub struct SubGraphUi;
#[derive(Debug, Hash, PartialEq, Eq, Clone, RenderLabel)]
pub enum NodeUi {
UiPass,
}
}
pub const UI_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(13012847047162779583);
#[derive(Debug, Hash, PartialEq, Eq, Clone, SystemSet)]
pub enum RenderUiSystem {
ExtractBackgrounds,
ExtractImages,
ExtractTextureSlice,
ExtractBorders,
ExtractText,
}
pub fn build_ui_render(app: &mut App) {
load_internal_asset!(app, UI_SHADER_HANDLE, "ui.wgsl", Shader::from_wgsl);
let Some(render_app) = app.get_sub_app_mut(RenderApp) else {
return;
};
render_app
.init_resource::<SpecializedRenderPipelines<UiPipeline>>()
.init_resource::<UiImageBindGroups>()
.init_resource::<UiMeta>()
.init_resource::<ExtractedUiNodes>()
.allow_ambiguous_resource::<ExtractedUiNodes>()
.init_resource::<DrawFunctions<TransparentUi>>()
.init_resource::<ViewSortedRenderPhases<TransparentUi>>()
.add_render_command::<TransparentUi, DrawUi>()
.configure_sets(
ExtractSchedule,
(
RenderUiSystem::ExtractBackgrounds,
RenderUiSystem::ExtractImages,
RenderUiSystem::ExtractTextureSlice,
RenderUiSystem::ExtractBorders,
RenderUiSystem::ExtractText,
)
.chain(),
)
.add_systems(
ExtractSchedule,
(
extract_default_ui_camera_view,
extract_uinode_background_colors.in_set(RenderUiSystem::ExtractBackgrounds),
extract_uinode_images.in_set(RenderUiSystem::ExtractImages),
extract_uinode_borders.in_set(RenderUiSystem::ExtractBorders),
#[cfg(feature = "bevy_text")]
extract_uinode_text.in_set(RenderUiSystem::ExtractText),
),
)
.add_systems(
Render,
(
queue_uinodes.in_set(RenderSet::Queue),
sort_phase_system::<TransparentUi>.in_set(RenderSet::PhaseSort),
prepare_uinodes.in_set(RenderSet::PrepareBindGroups),
),
);
// Render graph
let ui_graph_2d = get_ui_graph(render_app);
let ui_graph_3d = get_ui_graph(render_app);
let mut graph = render_app.world_mut().resource_mut::<RenderGraph>();
if let Some(graph_2d) = graph.get_sub_graph_mut(Core2d) {
graph_2d.add_sub_graph(SubGraphUi, ui_graph_2d);
graph_2d.add_node(NodeUi::UiPass, RunGraphOnViewNode::new(SubGraphUi));
graph_2d.add_node_edge(Node2d::EndMainPass, NodeUi::UiPass);
graph_2d.add_node_edge(Node2d::EndMainPassPostProcessing, NodeUi::UiPass);
graph_2d.add_node_edge(NodeUi::UiPass, Node2d::Upscaling);
}
if let Some(graph_3d) = graph.get_sub_graph_mut(Core3d) {
graph_3d.add_sub_graph(SubGraphUi, ui_graph_3d);
graph_3d.add_node(NodeUi::UiPass, RunGraphOnViewNode::new(SubGraphUi));
graph_3d.add_node_edge(Node3d::EndMainPass, NodeUi::UiPass);
graph_3d.add_node_edge(Node3d::EndMainPassPostProcessing, NodeUi::UiPass);
graph_3d.add_node_edge(NodeUi::UiPass, Node3d::Upscaling);
}
app.add_plugins(UiTextureSlicerPlugin);
}
fn get_ui_graph(render_app: &mut SubApp) -> RenderGraph {
let ui_pass_node = UiPassNode::new(render_app.world_mut());
let mut ui_graph = RenderGraph::default();
ui_graph.add_node(NodeUi::UiPass, ui_pass_node);
ui_graph
}
/// The type of UI node.
/// This is used to determine how to render the UI node.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum NodeType {
Rect,
Border,
}
pub struct ExtractedUiNode {
pub stack_index: u32,
pub transform: Mat4,
pub color: LinearRgba,
pub rect: Rect,
pub image: AssetId<Image>,
pub atlas_scaling: Option<Vec2>,
pub clip: Option<Rect>,
pub flip_x: bool,
pub flip_y: bool,
// Camera to render this UI node to. By the time it is extracted,
// it is defaulted to a single camera if only one exists.
// Nodes with ambiguous camera will be ignored.
pub camera_entity: Entity,
/// Border radius of the UI node.
pub border_radius: ResolvedBorderRadius,
/// Border thickness of the UI node.
pub border: BorderRect,
pub node_type: NodeType,
}
#[derive(Resource, Default)]
pub struct ExtractedUiNodes {
pub uinodes: EntityHashMap<ExtractedUiNode>,
}
pub fn extract_uinode_background_colors(
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
default_ui_camera: Extract<DefaultUiCamera>,
uinode_query: Extract<
Query<(
Entity,
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&BackgroundColor,
)>,
>,
) {
for (entity, uinode, transform, view_visibility, clip, camera, background_color) in
&uinode_query
{
let Some(camera_entity) = camera.map(TargetCamera::entity).or(default_ui_camera.get())
else {
continue;
};
// Skip invisible backgrounds
if !view_visibility.get() || background_color.0.is_fully_transparent() {
continue;
}
extracted_uinodes.uinodes.insert(
entity,
ExtractedUiNode {
stack_index: uinode.stack_index,
transform: transform.compute_matrix(),
color: background_color.0.into(),
rect: Rect {
min: Vec2::ZERO,
max: uinode.calculated_size,
},
clip: clip.map(|clip| clip.clip),
image: AssetId::default(),
atlas_scaling: None,
flip_x: false,
flip_y: false,
camera_entity,
border: uinode.border(),
border_radius: uinode.border_radius(),
node_type: NodeType::Rect,
},
);
}
}
#[allow(clippy::too_many_arguments)]
pub fn extract_uinode_images(
mut commands: Commands,
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
texture_atlases: Extract<Res<Assets<TextureAtlasLayout>>>,
default_ui_camera: Extract<DefaultUiCamera>,
uinode_query: Extract<
Query<
(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&UiImage,
Option<&TextureAtlas>,
),
Without<ImageScaleMode>,
>,
>,
) {
for (uinode, transform, view_visibility, clip, camera, image, atlas) in &uinode_query {
let Some(camera_entity) = camera.map(TargetCamera::entity).or(default_ui_camera.get())
else {
continue;
};
// Skip invisible images
if !view_visibility.get()
|| image.color.is_fully_transparent()
|| image.texture.id() == TRANSPARENT_IMAGE_HANDLE.id()
{
continue;
}
let atlas_rect = atlas
.and_then(|s| s.texture_rect(&texture_atlases))
.map(|r| r.as_rect());
let mut rect = match (atlas_rect, image.rect) {
(None, None) => Rect {
min: Vec2::ZERO,
max: uinode.calculated_size,
},
(None, Some(image_rect)) => image_rect,
(Some(atlas_rect), None) => atlas_rect,
(Some(atlas_rect), Some(mut image_rect)) => {
image_rect.min += atlas_rect.min;
image_rect.max += atlas_rect.min;
image_rect
}
};
let atlas_scaling = if atlas_rect.is_some() || image.rect.is_some() {
let atlas_scaling = uinode.size() / rect.size();
rect.min *= atlas_scaling;
rect.max *= atlas_scaling;
Some(atlas_scaling)
} else {
None
};
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index: uinode.stack_index,
transform: transform.compute_matrix(),
color: image.color.into(),
rect,
clip: clip.map(|clip| clip.clip),
image: image.texture.id(),
atlas_scaling,
flip_x: image.flip_x,
flip_y: image.flip_y,
camera_entity,
border: uinode.border,
border_radius: uinode.border_radius,
node_type: NodeType::Rect,
},
);
}
}
pub fn extract_uinode_borders(
mut commands: Commands,
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
default_ui_camera: Extract<DefaultUiCamera>,
uinode_query: Extract<
Query<(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
AnyOf<(&BorderColor, &Outline)>,
)>,
>,
) {
let image = AssetId::<Image>::default();
for (
uinode,
global_transform,
view_visibility,
maybe_clip,
maybe_camera,
(maybe_border_color, maybe_outline),
) in &uinode_query
{
let Some(camera_entity) = maybe_camera
.map(TargetCamera::entity)
.or(default_ui_camera.get())
else {
continue;
};
// Skip invisible borders
if !view_visibility.get()
|| maybe_border_color.is_some_and(|border_color| border_color.0.is_fully_transparent())
&& maybe_outline.is_some_and(|outline| outline.color.is_fully_transparent())
{
continue;
}
// don't extract border if no border or the node is zero-sized (a zero sized node can still have an outline).
if !uinode.is_empty() && uinode.border() != BorderRect::ZERO {
if let Some(border_color) = maybe_border_color {
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index: uinode.stack_index,
transform: global_transform.compute_matrix(),
color: border_color.0.into(),
rect: Rect {
max: uinode.size(),
..Default::default()
},
image,
atlas_scaling: None,
clip: maybe_clip.map(|clip| clip.clip),
flip_x: false,
flip_y: false,
camera_entity,
border_radius: uinode.border_radius(),
border: uinode.border(),
node_type: NodeType::Border,
},
);
}
}
if let Some(outline) = maybe_outline {
let outline_size = uinode.outlined_node_size();
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index: uinode.stack_index,
transform: global_transform.compute_matrix(),
color: outline.color.into(),
rect: Rect {
max: outline_size,
..Default::default()
},
image,
atlas_scaling: None,
clip: maybe_clip.map(|clip| clip.clip),
flip_x: false,
flip_y: false,
camera_entity,
border: BorderRect::square(uinode.outline_width()),
border_radius: uinode.outline_radius(),
node_type: NodeType::Border,
},
);
}
}
}
/// The UI camera is "moved back" by this many units (plus the [`UI_CAMERA_TRANSFORM_OFFSET`]) and also has a view
/// distance of this many units. This ensures that with a left-handed projection,
/// as ui elements are "stacked on top of each other", they are within the camera's view
/// and have room to grow.
// TODO: Consider computing this value at runtime based on the maximum z-value.
const UI_CAMERA_FAR: f32 = 1000.0;
// This value is subtracted from the far distance for the camera's z-position to ensure nodes at z == 0.0 are rendered
// TODO: Evaluate if we still need this.
const UI_CAMERA_TRANSFORM_OFFSET: f32 = -0.1;
#[derive(Component)]
pub struct DefaultCameraView(pub Entity);
/// Extracts all UI elements associated with a camera into the render world.
pub fn extract_default_ui_camera_view(
mut commands: Commands,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
ui_scale: Extract<Res<UiScale>>,
query: Extract<
Query<(Entity, &Camera, Option<&UiAntiAlias>), Or<(With<Camera2d>, With<Camera3d>)>>,
>,
mut live_entities: Local<EntityHashSet>,
) {
live_entities.clear();
let scale = ui_scale.0.recip();
for (entity, camera, ui_anti_alias) in &query {
// ignore inactive cameras
if !camera.is_active {
continue;
}
if let (
Some(logical_size),
Some(URect {
min: physical_origin,
..
}),
Some(physical_size),
) = (
camera.logical_viewport_size(),
camera.physical_viewport_rect(),
camera.physical_viewport_size(),
) {
// use a projection matrix with the origin in the top left instead of the bottom left that comes with OrthographicProjection
let projection_matrix = Mat4::orthographic_rh(
0.0,
logical_size.x * scale,
logical_size.y * scale,
0.0,
0.0,
UI_CAMERA_FAR,
);
let default_camera_view = commands
.spawn(ExtractedView {
clip_from_view: projection_matrix,
world_from_view: GlobalTransform::from_xyz(
0.0,
0.0,
UI_CAMERA_FAR + UI_CAMERA_TRANSFORM_OFFSET,
),
clip_from_world: None,
hdr: camera.hdr,
viewport: UVec4::new(
physical_origin.x,
physical_origin.y,
physical_size.x,
physical_size.y,
),
color_grading: Default::default(),
})
.id();
let entity_commands = commands
.get_or_spawn(entity)
.insert(DefaultCameraView(default_camera_view));
if let Some(ui_anti_alias) = ui_anti_alias {
entity_commands.insert(*ui_anti_alias);
}
transparent_render_phases.insert_or_clear(entity);
live_entities.insert(entity);
}
}
transparent_render_phases.retain(|entity, _| live_entities.contains(entity));
}
#[cfg(feature = "bevy_text")]
pub fn extract_uinode_text(
mut commands: Commands,
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
camera_query: Extract<Query<(Entity, &Camera)>>,
default_ui_camera: Extract<DefaultUiCamera>,
texture_atlases: Extract<Res<Assets<TextureAtlasLayout>>>,
ui_scale: Extract<Res<UiScale>>,
uinode_query: Extract<
Query<(
&Node,
&GlobalTransform,
&ViewVisibility,
Option<&CalculatedClip>,
Option<&TargetCamera>,
&Text,
&TextLayoutInfo,
)>,
>,
) {
for (uinode, global_transform, view_visibility, clip, camera, text, text_layout_info) in
&uinode_query
{
let Some(camera_entity) = camera.map(TargetCamera::entity).or(default_ui_camera.get())
else {
continue;
};
// Skip if not visible or if size is set to zero (e.g. when a parent is set to `Display::None`)
if !view_visibility.get() || uinode.is_empty() {
continue;
}
let scale_factor = camera_query
.get(camera_entity)
.ok()
.and_then(|(_, c)| c.target_scaling_factor())
.unwrap_or(1.0)
* ui_scale.0;
let inverse_scale_factor = scale_factor.recip();
// Align the text to the nearest physical pixel:
// * Translate by minus the text node's half-size
// (The transform translates to the center of the node but the text coordinates are relative to the node's top left corner)
// * Multiply the logical coordinates by the scale factor to get its position in physical coordinates
// * Round the physical position to the nearest physical pixel
// * Multiply by the rounded physical position by the inverse scale factor to return to logical coordinates
let logical_top_left = -0.5 * uinode.size();
let mut transform = global_transform.affine()
* bevy_math::Affine3A::from_translation(logical_top_left.extend(0.));
transform.translation *= scale_factor;
transform.translation = transform.translation.round();
transform.translation *= inverse_scale_factor;
let mut color = LinearRgba::WHITE;
let mut current_section = usize::MAX;
for PositionedGlyph {
position,
atlas_info,
section_index,
..
} in &text_layout_info.glyphs
{
if *section_index != current_section {
color = LinearRgba::from(text.sections[*section_index].style.color);
current_section = *section_index;
}
let atlas = texture_atlases.get(&atlas_info.texture_atlas).unwrap();
let mut rect = atlas.textures[atlas_info.location.glyph_index].as_rect();
rect.min *= inverse_scale_factor;
rect.max *= inverse_scale_factor;
extracted_uinodes.uinodes.insert(
commands.spawn_empty().id(),
ExtractedUiNode {
stack_index: uinode.stack_index,
transform: transform
* Mat4::from_translation(position.extend(0.) * inverse_scale_factor),
color,
rect,
image: atlas_info.texture.id(),
atlas_scaling: Some(Vec2::splat(inverse_scale_factor)),
clip: clip.map(|clip| clip.clip),
flip_x: false,
flip_y: false,
camera_entity,
border: BorderRect::ZERO,
border_radius: ResolvedBorderRadius::ZERO,
node_type: NodeType::Rect,
},
);
}
}
}
#[repr(C)]
#[derive(Copy, Clone, Pod, Zeroable)]
struct UiVertex {
pub position: [f32; 3],
pub uv: [f32; 2],
pub color: [f32; 4],
/// Shader flags to determine how to render the UI node.
/// See [`shader_flags`] for possible values.
pub flags: u32,
/// Border radius of the UI node.
/// Ordering: top left, top right, bottom right, bottom left.
pub radius: [f32; 4],
/// Border thickness of the UI node.
/// Ordering: left, top, right, bottom.
pub border: [f32; 4],
/// Size of the UI node.
pub size: [f32; 2],
}
#[derive(Resource)]
pub struct UiMeta {
vertices: RawBufferVec<UiVertex>,
indices: RawBufferVec<u32>,
view_bind_group: Option<BindGroup>,
}
impl Default for UiMeta {
fn default() -> Self {
Self {
vertices: RawBufferVec::new(BufferUsages::VERTEX),
indices: RawBufferVec::new(BufferUsages::INDEX),
view_bind_group: None,
}
}
}
pub(crate) const QUAD_VERTEX_POSITIONS: [Vec3; 4] = [
Vec3::new(-0.5, -0.5, 0.0),
Vec3::new(0.5, -0.5, 0.0),
Vec3::new(0.5, 0.5, 0.0),
Vec3::new(-0.5, 0.5, 0.0),
];
pub(crate) const QUAD_INDICES: [usize; 6] = [0, 2, 3, 0, 1, 2];
#[derive(Component)]
pub struct UiBatch {
pub range: Range<u32>,
pub image: AssetId<Image>,
pub camera: Entity,
}
/// The values here should match the values for the constants in `ui.wgsl`
pub mod shader_flags {
pub const UNTEXTURED: u32 = 0;
pub const TEXTURED: u32 = 1;
/// Ordering: top left, top right, bottom right, bottom left.
pub const CORNERS: [u32; 4] = [0, 2, 2 | 4, 4];
pub const BORDER: u32 = 8;
}
#[allow(clippy::too_many_arguments)]
pub fn queue_uinodes(
extracted_uinodes: Res<ExtractedUiNodes>,
ui_pipeline: Res<UiPipeline>,
mut pipelines: ResMut<SpecializedRenderPipelines<UiPipeline>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
mut views: Query<(Entity, &ExtractedView, Option<&UiAntiAlias>)>,
pipeline_cache: Res<PipelineCache>,
draw_functions: Res<DrawFunctions<TransparentUi>>,
) {
let draw_function = draw_functions.read().id::<DrawUi>();
for (entity, extracted_uinode) in extracted_uinodes.uinodes.iter() {
let Ok((view_entity, view, ui_anti_alias)) = views.get_mut(extracted_uinode.camera_entity)
else {
continue;
};
let Some(transparent_phase) = transparent_render_phases.get_mut(&view_entity) else {
continue;
};
let pipeline = pipelines.specialize(
&pipeline_cache,
&ui_pipeline,
UiPipelineKey {
hdr: view.hdr,
anti_alias: matches!(ui_anti_alias, None | Some(UiAntiAlias::On)),
},
);
transparent_phase.add(TransparentUi {
draw_function,
pipeline,
entity: *entity,
sort_key: (
FloatOrd(extracted_uinode.stack_index as f32),
entity.index(),
),
// batch_range will be calculated in prepare_uinodes
batch_range: 0..0,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
#[derive(Resource, Default)]
pub struct UiImageBindGroups {
pub values: HashMap<AssetId<Image>, BindGroup>,
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_uinodes(
mut commands: Commands,
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut ui_meta: ResMut<UiMeta>,
mut extracted_uinodes: ResMut<ExtractedUiNodes>,
view_uniforms: Res<ViewUniforms>,
ui_pipeline: Res<UiPipeline>,
mut image_bind_groups: ResMut<UiImageBindGroups>,
gpu_images: Res<RenderAssets<GpuImage>>,
mut phases: ResMut<ViewSortedRenderPhases<TransparentUi>>,
events: Res<SpriteAssetEvents>,
mut previous_len: Local<usize>,
) {
// If an image has changed, the GpuImage has (probably) changed
for event in &events.images {
match event {
AssetEvent::Added { .. } |
AssetEvent::Unused { .. } |
// Images don't have dependencies
AssetEvent::LoadedWithDependencies { .. } => {}
AssetEvent::Modified { id } | AssetEvent::Removed { id } => {
image_bind_groups.values.remove(id);
}
};
}
if let Some(view_binding) = view_uniforms.uniforms.binding() {
let mut batches: Vec<(Entity, UiBatch)> = Vec::with_capacity(*previous_len);
ui_meta.vertices.clear();
ui_meta.indices.clear();
ui_meta.view_bind_group = Some(render_device.create_bind_group(
"ui_view_bind_group",
&ui_pipeline.view_layout,
&BindGroupEntries::single(view_binding),
));
// Buffer indexes
let mut vertices_index = 0;
let mut indices_index = 0;
for ui_phase in phases.values_mut() {
let mut batch_item_index = 0;
let mut batch_image_handle = AssetId::invalid();
for item_index in 0..ui_phase.items.len() {
let item = &mut ui_phase.items[item_index];
if let Some(extracted_uinode) = extracted_uinodes.uinodes.get(&item.entity) {
let mut existing_batch = batches.last_mut();
if batch_image_handle == AssetId::invalid()
|| existing_batch.is_none()
|| (batch_image_handle != AssetId::default()
&& extracted_uinode.image != AssetId::default()
&& batch_image_handle != extracted_uinode.image)
|| existing_batch.as_ref().map(|(_, b)| b.camera)
!= Some(extracted_uinode.camera_entity)
{
if let Some(gpu_image) = gpu_images.get(extracted_uinode.image) {
batch_item_index = item_index;
batch_image_handle = extracted_uinode.image;
let new_batch = UiBatch {
range: vertices_index..vertices_index,
image: extracted_uinode.image,
camera: extracted_uinode.camera_entity,
};
batches.push((item.entity, new_batch));
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"ui_material_bind_group",
&ui_pipeline.image_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
existing_batch = batches.last_mut();
} else {
continue;
}
} else if batch_image_handle == AssetId::default()
&& extracted_uinode.image != AssetId::default()
{
if let Some(gpu_image) = gpu_images.get(extracted_uinode.image) {
batch_image_handle = extracted_uinode.image;
existing_batch.as_mut().unwrap().1.image = extracted_uinode.image;
image_bind_groups
.values
.entry(batch_image_handle)
.or_insert_with(|| {
render_device.create_bind_group(
"ui_material_bind_group",
&ui_pipeline.image_layout,
&BindGroupEntries::sequential((
&gpu_image.texture_view,
&gpu_image.sampler,
)),
)
});
} else {
continue;
}
}
let mut flags = if extracted_uinode.image != AssetId::default() {
shader_flags::TEXTURED
} else {
shader_flags::UNTEXTURED
};
let mut uinode_rect = extracted_uinode.rect;
let rect_size = uinode_rect.size().extend(1.0);
// Specify the corners of the node
let positions = QUAD_VERTEX_POSITIONS.map(|pos| {
(extracted_uinode.transform * (pos * rect_size).extend(1.)).xyz()
});
// Calculate the effect of clipping
// Note: this won't work with rotation/scaling, but that's much more complex (may need more that 2 quads)
let mut positions_diff = if let Some(clip) = extracted_uinode.clip {
[
Vec2::new(
f32::max(clip.min.x - positions[0].x, 0.),
f32::max(clip.min.y - positions[0].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[1].x, 0.),
f32::max(clip.min.y - positions[1].y, 0.),
),
Vec2::new(
f32::min(clip.max.x - positions[2].x, 0.),
f32::min(clip.max.y - positions[2].y, 0.),
),
Vec2::new(
f32::max(clip.min.x - positions[3].x, 0.),
f32::min(clip.max.y - positions[3].y, 0.),
),
]
} else {
[Vec2::ZERO; 4]
};
let positions_clipped = [
positions[0] + positions_diff[0].extend(0.),
positions[1] + positions_diff[1].extend(0.),
positions[2] + positions_diff[2].extend(0.),
positions[3] + positions_diff[3].extend(0.),
];
let transformed_rect_size =
extracted_uinode.transform.transform_vector3(rect_size);
// Don't try to cull nodes that have a rotation
// In a rotation around the Z-axis, this value is 0.0 for an angle of 0.0 or π
// In those two cases, the culling check can proceed normally as corners will be on
// horizontal / vertical lines
// For all other angles, bypass the culling check
// This does not properly handles all rotations on all axis
if extracted_uinode.transform.x_axis[1] == 0.0 {
// Cull nodes that are completely clipped
if positions_diff[0].x - positions_diff[1].x >= transformed_rect_size.x
|| positions_diff[1].y - positions_diff[2].y >= transformed_rect_size.y
{
continue;
}
}
let uvs = if flags == shader_flags::UNTEXTURED {
[Vec2::ZERO, Vec2::X, Vec2::ONE, Vec2::Y]
} else {
let image = gpu_images
.get(extracted_uinode.image)
.expect("Image was checked during batching and should still exist");
// Rescale atlases. This is done here because we need texture data that might not be available in Extract.
let atlas_extent = extracted_uinode
.atlas_scaling
.map(|scaling| image.size.as_vec2() * scaling)
.unwrap_or(uinode_rect.max);
if extracted_uinode.flip_x {
core::mem::swap(&mut uinode_rect.max.x, &mut uinode_rect.min.x);
positions_diff[0].x *= -1.;
positions_diff[1].x *= -1.;
positions_diff[2].x *= -1.;
positions_diff[3].x *= -1.;
}
if extracted_uinode.flip_y {
core::mem::swap(&mut uinode_rect.max.y, &mut uinode_rect.min.y);
positions_diff[0].y *= -1.;
positions_diff[1].y *= -1.;
positions_diff[2].y *= -1.;
positions_diff[3].y *= -1.;
}
[
Vec2::new(
uinode_rect.min.x + positions_diff[0].x,
uinode_rect.min.y + positions_diff[0].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[1].x,
uinode_rect.min.y + positions_diff[1].y,
),
Vec2::new(
uinode_rect.max.x + positions_diff[2].x,
uinode_rect.max.y + positions_diff[2].y,
),
Vec2::new(
uinode_rect.min.x + positions_diff[3].x,
uinode_rect.max.y + positions_diff[3].y,
),
]
.map(|pos| pos / atlas_extent)
};
let color = extracted_uinode.color.to_f32_array();
if extracted_uinode.node_type == NodeType::Border {
flags |= shader_flags::BORDER;
}
for i in 0..4 {
ui_meta.vertices.push(UiVertex {
position: positions_clipped[i].into(),
uv: uvs[i].into(),
color,
flags: flags | shader_flags::CORNERS[i],
radius: [
extracted_uinode.border_radius.top_left,
extracted_uinode.border_radius.top_right,
extracted_uinode.border_radius.bottom_right,
extracted_uinode.border_radius.bottom_left,
],
border: [
extracted_uinode.border.left,
extracted_uinode.border.top,
extracted_uinode.border.right,
extracted_uinode.border.bottom,
],
size: rect_size.xy().into(),
});
}
for &i in &QUAD_INDICES {
ui_meta.indices.push(indices_index + i as u32);
}
vertices_index += 6;
indices_index += 4;
existing_batch.unwrap().1.range.end = vertices_index;
ui_phase.items[batch_item_index].batch_range_mut().end += 1;
} else {
batch_image_handle = AssetId::invalid();
}
}
}
ui_meta.vertices.write_buffer(&render_device, &render_queue);
ui_meta.indices.write_buffer(&render_device, &render_queue);
*previous_len = batches.len();
commands.insert_or_spawn_batch(batches);
}
extracted_uinodes.uinodes.clear();
}