mirror of
https://github.com/bevyengine/bevy
synced 2024-12-24 03:53:06 +00:00
bf765e61b5
# Objective - Contributes to #15460 ## Solution - Added `std` feature (enabled by default) ## Testing - CI - `cargo check -p bevy_reflect --no-default-features --target "x86_64-unknown-none"` - UEFI demo application runs with this branch of `bevy_reflect`, allowing `derive(Reflect)` ## Notes - The [`spin`](https://crates.io/crates/spin) crate has been included to provide `RwLock` and `Once` (as an alternative to `OnceLock`) when the `std` feature is not enabled. Another alternative may be more desirable, please provide feedback if you have a strong opinion here! - Certain items (`Box`, `String`, `ToString`) provided by `alloc` have been added to `__macro_exports` as a way to avoid `alloc` vs `std` namespacing. I'm personally quite annoyed that we can't rely on `alloc` as a crate name in `std` environments within macros. I'd love an alternative to my approach here, but I suspect it's the least-bad option. - I would've liked to have an `alloc` feature (for allocation-free `bevy_reflect`), unfortunately, `erased_serde` unconditionally requires access to `Box`. Maybe one day we could design around this, but for now it just means `bevy_reflect` requires `alloc`. --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
129 lines
5.2 KiB
Rust
129 lines
5.2 KiB
Rust
use crate::{FromType, PartialReflect, Reflect};
|
|
use alloc::boxed::Box;
|
|
|
|
/// A trait that enables types to be dynamically constructed from reflected data.
|
|
///
|
|
/// It's recommended to use the [derive macro] rather than manually implementing this trait.
|
|
///
|
|
/// `FromReflect` allows dynamic proxy types, like [`DynamicStruct`], to be used to generate
|
|
/// their concrete counterparts.
|
|
/// It can also be used to partially or fully clone a type (depending on whether it has
|
|
/// ignored fields or not).
|
|
///
|
|
/// In some cases, this trait may even be required.
|
|
/// Deriving [`Reflect`] on an enum requires all its fields to implement `FromReflect`.
|
|
/// Additionally, some complex types like `Vec<T>` require that their element types
|
|
/// implement this trait.
|
|
/// The reason for such requirements is that some operations require new data to be constructed,
|
|
/// such as swapping to a new variant or pushing data to a homogeneous list.
|
|
///
|
|
/// See the [crate-level documentation] to see how this trait can be used.
|
|
///
|
|
/// [derive macro]: bevy_reflect_derive::FromReflect
|
|
/// [`DynamicStruct`]: crate::DynamicStruct
|
|
/// [crate-level documentation]: crate
|
|
#[diagnostic::on_unimplemented(
|
|
message = "`{Self}` does not implement `FromReflect` so cannot be created through reflection",
|
|
note = "consider annotating `{Self}` with `#[derive(Reflect)]`"
|
|
)]
|
|
pub trait FromReflect: Reflect + Sized {
|
|
/// Constructs a concrete instance of `Self` from a reflected value.
|
|
fn from_reflect(reflect: &dyn PartialReflect) -> Option<Self>;
|
|
|
|
/// Attempts to downcast the given value to `Self` using,
|
|
/// constructing the value using [`from_reflect`] if that fails.
|
|
///
|
|
/// This method is more efficient than using [`from_reflect`] for cases where
|
|
/// the given value is likely a boxed instance of `Self` (i.e. `Box<Self>`)
|
|
/// rather than a boxed dynamic type (e.g. [`DynamicStruct`], [`DynamicList`], etc.).
|
|
///
|
|
/// [`from_reflect`]: Self::from_reflect
|
|
/// [`DynamicStruct`]: crate::DynamicStruct
|
|
/// [`DynamicList`]: crate::DynamicList
|
|
fn take_from_reflect(
|
|
reflect: Box<dyn PartialReflect>,
|
|
) -> Result<Self, Box<dyn PartialReflect>> {
|
|
match reflect.try_take::<Self>() {
|
|
Ok(value) => Ok(value),
|
|
Err(value) => match Self::from_reflect(value.as_ref()) {
|
|
None => Err(value),
|
|
Some(value) => Ok(value),
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Type data that represents the [`FromReflect`] trait and allows it to be used dynamically.
|
|
///
|
|
/// `FromReflect` allows dynamic types (e.g. [`DynamicStruct`], [`DynamicEnum`], etc.) to be converted
|
|
/// to their full, concrete types. This is most important when it comes to deserialization where it isn't
|
|
/// guaranteed that every field exists when trying to construct the final output.
|
|
///
|
|
/// However, to do this, you normally need to specify the exact concrete type:
|
|
///
|
|
/// ```
|
|
/// # use bevy_reflect::{DynamicTupleStruct, FromReflect, Reflect};
|
|
/// #[derive(Reflect, PartialEq, Eq, Debug)]
|
|
/// struct Foo(#[reflect(default = "default_value")] usize);
|
|
///
|
|
/// fn default_value() -> usize { 123 }
|
|
///
|
|
/// let reflected = DynamicTupleStruct::default();
|
|
///
|
|
/// let concrete: Foo = <Foo as FromReflect>::from_reflect(&reflected).unwrap();
|
|
///
|
|
/// assert_eq!(Foo(123), concrete);
|
|
/// ```
|
|
///
|
|
/// In a dynamic context where the type might not be known at compile-time, this is nearly impossible to do.
|
|
/// That is why this type data struct exists— it allows us to construct the full type without knowing
|
|
/// what the actual type is.
|
|
///
|
|
/// # Example
|
|
///
|
|
/// ```
|
|
/// # use bevy_reflect::{DynamicTupleStruct, Reflect, ReflectFromReflect, Typed, TypeRegistry, TypePath};
|
|
/// # #[derive(Reflect, PartialEq, Eq, Debug)]
|
|
/// # struct Foo(#[reflect(default = "default_value")] usize);
|
|
/// # fn default_value() -> usize { 123 }
|
|
/// # let mut registry = TypeRegistry::new();
|
|
/// # registry.register::<Foo>();
|
|
///
|
|
/// let mut reflected = DynamicTupleStruct::default();
|
|
/// reflected.set_represented_type(Some(<Foo as Typed>::type_info()));
|
|
///
|
|
/// let registration = registry.get_with_type_path(<Foo as TypePath>::type_path()).unwrap();
|
|
/// let rfr = registration.data::<ReflectFromReflect>().unwrap();
|
|
///
|
|
/// let concrete: Box<dyn Reflect> = rfr.from_reflect(&reflected).unwrap();
|
|
///
|
|
/// assert_eq!(Foo(123), concrete.take::<Foo>().unwrap());
|
|
/// ```
|
|
///
|
|
/// [`DynamicStruct`]: crate::DynamicStruct
|
|
/// [`DynamicEnum`]: crate::DynamicEnum
|
|
#[derive(Clone)]
|
|
pub struct ReflectFromReflect {
|
|
from_reflect: fn(&dyn PartialReflect) -> Option<Box<dyn Reflect>>,
|
|
}
|
|
|
|
impl ReflectFromReflect {
|
|
/// Perform a [`FromReflect::from_reflect`] conversion on the given reflection object.
|
|
///
|
|
/// This will convert the object to a concrete type if it wasn't already, and return
|
|
/// the value as `Box<dyn Reflect>`.
|
|
#[allow(clippy::wrong_self_convention)]
|
|
pub fn from_reflect(&self, reflect_value: &dyn PartialReflect) -> Option<Box<dyn Reflect>> {
|
|
(self.from_reflect)(reflect_value)
|
|
}
|
|
}
|
|
|
|
impl<T: FromReflect> FromType<T> for ReflectFromReflect {
|
|
fn from_type() -> Self {
|
|
Self {
|
|
from_reflect: |reflect_value| {
|
|
T::from_reflect(reflect_value).map(|value| Box::new(value) as Box<dyn Reflect>)
|
|
},
|
|
}
|
|
}
|
|
}
|