mirror of
https://github.com/bevyengine/bevy
synced 2024-11-10 07:04:33 +00:00
d0a5ddacd9
# Objective - Enable stressing of more of the material mesh entity draw code paths ## Solution - Support generation of a number of different mesh assets from the built-in primitives, and select randomly from them. This breaks batches based on different meshes. - Support disabling automatic batching. This skips the batching cost at the expense of stressing render pass draw command encoding. - Support enabling directional light cascaded shadow mapping - this is commonly a big source of slow down in normal scenes. --------- Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com> Co-authored-by: François Mockers <francois.mockers@vleue.com>
481 lines
17 KiB
Rust
481 lines
17 KiB
Rust
//! Simple benchmark to test per-entity draw overhead.
|
|
//!
|
|
//! To measure performance realistically, be sure to run this in release mode.
|
|
//! `cargo run --example many_cubes --release`
|
|
//!
|
|
//! By default, this arranges the meshes in a spherical pattern that
|
|
//! distributes the meshes evenly.
|
|
//!
|
|
//! See `cargo run --example many_cubes --release -- --help` for more options.
|
|
|
|
use std::{f64::consts::PI, str::FromStr};
|
|
|
|
use argh::FromArgs;
|
|
use bevy::{
|
|
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
|
|
math::{DVec2, DVec3},
|
|
pbr::NotShadowCaster,
|
|
prelude::*,
|
|
render::{
|
|
batching::NoAutomaticBatching,
|
|
render_asset::RenderAssetUsages,
|
|
render_resource::{Extent3d, TextureDimension, TextureFormat},
|
|
view::NoFrustumCulling,
|
|
},
|
|
window::{PresentMode, WindowResolution},
|
|
winit::{UpdateMode, WinitSettings},
|
|
};
|
|
use rand::{seq::SliceRandom, Rng, SeedableRng};
|
|
use rand_chacha::ChaCha8Rng;
|
|
|
|
#[derive(FromArgs, Resource)]
|
|
/// `many_cubes` stress test
|
|
struct Args {
|
|
/// how the cube instances should be positioned.
|
|
#[argh(option, default = "Layout::Sphere")]
|
|
layout: Layout,
|
|
|
|
/// whether to step the camera animation by a fixed amount such that each frame is the same across runs.
|
|
#[argh(switch)]
|
|
benchmark: bool,
|
|
|
|
/// whether to vary the material data in each instance.
|
|
#[argh(switch)]
|
|
vary_material_data_per_instance: bool,
|
|
|
|
/// the number of different textures from which to randomly select the material base color. 0 means no textures.
|
|
#[argh(option, default = "0")]
|
|
material_texture_count: usize,
|
|
|
|
/// the number of different meshes from which to randomly select. Clamped to at least 1.
|
|
#[argh(option, default = "1")]
|
|
mesh_count: usize,
|
|
|
|
/// whether to disable frustum culling. Stresses queuing and batching as all mesh material entities in the scene are always drawn.
|
|
#[argh(switch)]
|
|
no_frustum_culling: bool,
|
|
|
|
/// whether to disable automatic batching. Skips batching resulting in heavy stress on render pass draw command encoding.
|
|
#[argh(switch)]
|
|
no_automatic_batching: bool,
|
|
|
|
/// whether to enable directional light cascaded shadow mapping.
|
|
#[argh(switch)]
|
|
shadows: bool,
|
|
}
|
|
|
|
#[derive(Default, Clone)]
|
|
enum Layout {
|
|
Cube,
|
|
#[default]
|
|
Sphere,
|
|
}
|
|
|
|
impl FromStr for Layout {
|
|
type Err = String;
|
|
|
|
fn from_str(s: &str) -> Result<Self, Self::Err> {
|
|
match s {
|
|
"cube" => Ok(Self::Cube),
|
|
"sphere" => Ok(Self::Sphere),
|
|
_ => Err(format!(
|
|
"Unknown layout value: '{}', valid options: 'cube', 'sphere'",
|
|
s
|
|
)),
|
|
}
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
// `from_env` panics on the web
|
|
#[cfg(not(target_arch = "wasm32"))]
|
|
let args: Args = argh::from_env();
|
|
#[cfg(target_arch = "wasm32")]
|
|
let args = Args::from_args(&[], &[]).unwrap();
|
|
|
|
App::new()
|
|
.add_plugins((
|
|
DefaultPlugins.set(WindowPlugin {
|
|
primary_window: Some(Window {
|
|
present_mode: PresentMode::AutoNoVsync,
|
|
resolution: WindowResolution::new(1920.0, 1080.0)
|
|
.with_scale_factor_override(1.0),
|
|
..default()
|
|
}),
|
|
..default()
|
|
}),
|
|
FrameTimeDiagnosticsPlugin,
|
|
LogDiagnosticsPlugin::default(),
|
|
))
|
|
.insert_resource(WinitSettings {
|
|
focused_mode: UpdateMode::Continuous,
|
|
unfocused_mode: UpdateMode::Continuous,
|
|
})
|
|
.insert_resource(args)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, (move_camera, print_mesh_count))
|
|
.run();
|
|
}
|
|
|
|
const WIDTH: usize = 200;
|
|
const HEIGHT: usize = 200;
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
args: Res<Args>,
|
|
mesh_assets: ResMut<Assets<Mesh>>,
|
|
material_assets: ResMut<Assets<StandardMaterial>>,
|
|
images: ResMut<Assets<Image>>,
|
|
) {
|
|
warn!(include_str!("warning_string.txt"));
|
|
|
|
let args = args.into_inner();
|
|
let images = images.into_inner();
|
|
let material_assets = material_assets.into_inner();
|
|
let mesh_assets = mesh_assets.into_inner();
|
|
|
|
let meshes = init_meshes(args, mesh_assets);
|
|
|
|
let material_textures = init_textures(args, images);
|
|
let materials = init_materials(args, &material_textures, material_assets);
|
|
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut material_rng = ChaCha8Rng::seed_from_u64(42);
|
|
match args.layout {
|
|
Layout::Sphere => {
|
|
// NOTE: This pattern is good for testing performance of culling as it provides roughly
|
|
// the same number of visible meshes regardless of the viewing angle.
|
|
const N_POINTS: usize = WIDTH * HEIGHT * 4;
|
|
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
|
|
let radius = WIDTH as f64 * 2.5;
|
|
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
|
|
for i in 0..N_POINTS {
|
|
let spherical_polar_theta_phi =
|
|
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
|
|
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
|
|
let (mesh, transform) = meshes.choose(&mut material_rng).unwrap();
|
|
let mut cube = commands.spawn(PbrBundle {
|
|
mesh: mesh.clone(),
|
|
material: materials.choose(&mut material_rng).unwrap().clone(),
|
|
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3())
|
|
.looking_at(Vec3::ZERO, Vec3::Y)
|
|
.mul_transform(*transform),
|
|
..default()
|
|
});
|
|
if args.no_frustum_culling {
|
|
cube.insert(NoFrustumCulling);
|
|
}
|
|
if args.no_automatic_batching {
|
|
cube.insert(NoAutomaticBatching);
|
|
}
|
|
}
|
|
|
|
// camera
|
|
commands.spawn(Camera3dBundle::default());
|
|
// Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: mesh_assets.add(Cuboid::from_size(Vec3::splat(radius as f32 * 2.2))),
|
|
material: material_assets.add(StandardMaterial::from(Color::WHITE)),
|
|
transform: Transform::from_scale(-Vec3::ONE),
|
|
..default()
|
|
},
|
|
NotShadowCaster,
|
|
));
|
|
}
|
|
_ => {
|
|
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
|
|
// as the number of visible meshes rises and falls depending on the viewing angle.
|
|
let scale = 2.5;
|
|
for x in 0..WIDTH {
|
|
for y in 0..HEIGHT {
|
|
// introduce spaces to break any kind of moiré pattern
|
|
if x % 10 == 0 || y % 10 == 0 {
|
|
continue;
|
|
}
|
|
// cube
|
|
commands.spawn(PbrBundle {
|
|
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
|
|
material: materials.choose(&mut material_rng).unwrap().clone(),
|
|
transform: Transform::from_xyz((x as f32) * scale, (y as f32) * scale, 0.0),
|
|
..default()
|
|
});
|
|
commands.spawn(PbrBundle {
|
|
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
|
|
material: materials.choose(&mut material_rng).unwrap().clone(),
|
|
transform: Transform::from_xyz(
|
|
(x as f32) * scale,
|
|
HEIGHT as f32 * scale,
|
|
(y as f32) * scale,
|
|
),
|
|
..default()
|
|
});
|
|
commands.spawn(PbrBundle {
|
|
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
|
|
material: materials.choose(&mut material_rng).unwrap().clone(),
|
|
transform: Transform::from_xyz((x as f32) * scale, 0.0, (y as f32) * scale),
|
|
..default()
|
|
});
|
|
commands.spawn(PbrBundle {
|
|
mesh: meshes.choose(&mut material_rng).unwrap().0.clone(),
|
|
material: materials.choose(&mut material_rng).unwrap().clone(),
|
|
transform: Transform::from_xyz(0.0, (x as f32) * scale, (y as f32) * scale),
|
|
..default()
|
|
});
|
|
}
|
|
}
|
|
// camera
|
|
let center = 0.5 * scale * Vec3::new(WIDTH as f32, HEIGHT as f32, WIDTH as f32);
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_translation(center),
|
|
..default()
|
|
});
|
|
// Inside-out box around the meshes onto which shadows are cast (though you cannot see them...)
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: mesh_assets.add(Cuboid::from_size(2.0 * 1.1 * center)),
|
|
material: material_assets.add(StandardMaterial::from(Color::WHITE)),
|
|
transform: Transform::from_scale(-Vec3::ONE).with_translation(center),
|
|
..default()
|
|
},
|
|
NotShadowCaster,
|
|
));
|
|
}
|
|
}
|
|
|
|
commands.spawn(DirectionalLightBundle {
|
|
directional_light: DirectionalLight {
|
|
shadows_enabled: args.shadows,
|
|
..default()
|
|
},
|
|
transform: Transform::IDENTITY.looking_at(Vec3::new(0.0, -1.0, -1.0), Vec3::Y),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
fn init_textures(args: &Args, images: &mut Assets<Image>) -> Vec<Handle<Image>> {
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut color_rng = ChaCha8Rng::seed_from_u64(42);
|
|
let color_bytes: Vec<u8> = (0..(args.material_texture_count * 4))
|
|
.map(|i| if (i % 4) == 3 { 255 } else { color_rng.gen() })
|
|
.collect();
|
|
color_bytes
|
|
.chunks(4)
|
|
.map(|pixel| {
|
|
images.add(Image::new_fill(
|
|
Extent3d {
|
|
width: 1,
|
|
height: 1,
|
|
depth_or_array_layers: 1,
|
|
},
|
|
TextureDimension::D2,
|
|
pixel,
|
|
TextureFormat::Rgba8UnormSrgb,
|
|
RenderAssetUsages::RENDER_WORLD,
|
|
))
|
|
})
|
|
.collect()
|
|
}
|
|
|
|
fn init_materials(
|
|
args: &Args,
|
|
textures: &[Handle<Image>],
|
|
assets: &mut Assets<StandardMaterial>,
|
|
) -> Vec<Handle<StandardMaterial>> {
|
|
let capacity = if args.vary_material_data_per_instance {
|
|
match args.layout {
|
|
Layout::Cube => (WIDTH - WIDTH / 10) * (HEIGHT - HEIGHT / 10),
|
|
Layout::Sphere => WIDTH * HEIGHT * 4,
|
|
}
|
|
} else {
|
|
args.material_texture_count
|
|
}
|
|
.max(1);
|
|
|
|
let mut materials = Vec::with_capacity(capacity);
|
|
materials.push(assets.add(StandardMaterial {
|
|
base_color: Color::WHITE,
|
|
base_color_texture: textures.first().cloned(),
|
|
..default()
|
|
}));
|
|
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut color_rng = ChaCha8Rng::seed_from_u64(42);
|
|
let mut texture_rng = ChaCha8Rng::seed_from_u64(42);
|
|
materials.extend(
|
|
std::iter::repeat_with(|| {
|
|
assets.add(StandardMaterial {
|
|
base_color: Color::srgb_u8(color_rng.gen(), color_rng.gen(), color_rng.gen()),
|
|
base_color_texture: textures.choose(&mut texture_rng).cloned(),
|
|
..default()
|
|
})
|
|
})
|
|
.take(capacity - materials.len()),
|
|
);
|
|
|
|
materials
|
|
}
|
|
|
|
fn init_meshes(args: &Args, assets: &mut Assets<Mesh>) -> Vec<(Handle<Mesh>, Transform)> {
|
|
let capacity = args.mesh_count.max(1);
|
|
|
|
// We're seeding the PRNG here to make this example deterministic for testing purposes.
|
|
// This isn't strictly required in practical use unless you need your app to be deterministic.
|
|
let mut radius_rng = ChaCha8Rng::seed_from_u64(42);
|
|
let mut variant = 0;
|
|
std::iter::repeat_with(|| {
|
|
let radius = radius_rng.gen_range(0.25f32..=0.75f32);
|
|
let (handle, transform) = match variant % 15 {
|
|
0 => (
|
|
assets.add(Cuboid {
|
|
half_size: Vec3::splat(radius),
|
|
}),
|
|
Transform::IDENTITY,
|
|
),
|
|
1 => (
|
|
assets.add(Capsule3d {
|
|
radius,
|
|
half_length: radius,
|
|
}),
|
|
Transform::IDENTITY,
|
|
),
|
|
2 => (
|
|
assets.add(Circle { radius }),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
),
|
|
3 => {
|
|
let mut vertices = [Vec2::ZERO; 3];
|
|
let dtheta = std::f32::consts::TAU / 3.0;
|
|
for (i, vertex) in vertices.iter_mut().enumerate() {
|
|
let (s, c) = (i as f32 * dtheta).sin_cos();
|
|
*vertex = Vec2::new(c, s) * radius;
|
|
}
|
|
(
|
|
assets.add(Triangle2d { vertices }),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
)
|
|
}
|
|
4 => (
|
|
assets.add(Rectangle {
|
|
half_size: Vec2::splat(radius),
|
|
}),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
),
|
|
v if (5..=8).contains(&v) => (
|
|
assets.add(RegularPolygon {
|
|
circumcircle: Circle { radius },
|
|
sides: v,
|
|
}),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
),
|
|
9 => (
|
|
assets.add(Cylinder {
|
|
radius,
|
|
half_height: radius,
|
|
}),
|
|
Transform::IDENTITY,
|
|
),
|
|
10 => (
|
|
assets.add(Ellipse {
|
|
half_size: Vec2::new(radius, 0.5 * radius),
|
|
}),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
),
|
|
11 => (
|
|
assets.add(
|
|
Plane3d {
|
|
normal: Dir3::NEG_Z,
|
|
}
|
|
.mesh()
|
|
.size(radius, radius),
|
|
),
|
|
Transform::IDENTITY,
|
|
),
|
|
12 => (assets.add(Sphere { radius }), Transform::IDENTITY),
|
|
13 => (
|
|
assets.add(Torus {
|
|
minor_radius: 0.5 * radius,
|
|
major_radius: radius,
|
|
}),
|
|
Transform::IDENTITY.looking_at(Vec3::Y, Vec3::Y),
|
|
),
|
|
14 => (
|
|
assets.add(Capsule2d {
|
|
radius,
|
|
half_length: radius,
|
|
}),
|
|
Transform::IDENTITY.looking_at(Vec3::Z, Vec3::Y),
|
|
),
|
|
_ => unreachable!(),
|
|
};
|
|
variant += 1;
|
|
(handle, transform)
|
|
})
|
|
.take(capacity)
|
|
.collect()
|
|
}
|
|
|
|
// NOTE: This epsilon value is apparently optimal for optimizing for the average
|
|
// nearest-neighbor distance. See:
|
|
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
|
|
// for details.
|
|
const EPSILON: f64 = 0.36;
|
|
|
|
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
|
|
DVec2::new(
|
|
PI * 2. * (i as f64 / golden_ratio),
|
|
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
|
|
)
|
|
}
|
|
|
|
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
|
|
let (sin_theta, cos_theta) = p.x.sin_cos();
|
|
let (sin_phi, cos_phi) = p.y.sin_cos();
|
|
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
|
|
}
|
|
|
|
// System for rotating the camera
|
|
fn move_camera(
|
|
time: Res<Time>,
|
|
args: Res<Args>,
|
|
mut camera_query: Query<&mut Transform, With<Camera>>,
|
|
) {
|
|
let mut camera_transform = camera_query.single_mut();
|
|
let delta = 0.15
|
|
* if args.benchmark {
|
|
1.0 / 60.0
|
|
} else {
|
|
time.delta_seconds()
|
|
};
|
|
camera_transform.rotate_z(delta);
|
|
camera_transform.rotate_x(delta);
|
|
}
|
|
|
|
// System for printing the number of meshes on every tick of the timer
|
|
fn print_mesh_count(
|
|
time: Res<Time>,
|
|
mut timer: Local<PrintingTimer>,
|
|
sprites: Query<(&Handle<Mesh>, &ViewVisibility)>,
|
|
) {
|
|
timer.tick(time.delta());
|
|
|
|
if timer.just_finished() {
|
|
info!(
|
|
"Meshes: {} - Visible Meshes {}",
|
|
sprites.iter().len(),
|
|
sprites.iter().filter(|(_, vis)| vis.get()).count(),
|
|
);
|
|
}
|
|
}
|
|
|
|
#[derive(Deref, DerefMut)]
|
|
struct PrintingTimer(Timer);
|
|
|
|
impl Default for PrintingTimer {
|
|
fn default() -> Self {
|
|
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
|
|
}
|
|
}
|