bevy/crates/bevy_ecs/src/query/world_query.rs
James O'Brien ea42d14344
Dynamic queries and builder API (#9774)
# Objective
Expand the existing `Query` API to support more dynamic use cases i.e.
scripting.

## Prior Art
 - #6390 
 - #8308 
- #10037

## Solution
- Create a `QueryBuilder` with runtime methods to define the set of
component accesses for a built query.
- Create new `WorldQueryData` implementations `FilteredEntityMut` and
`FilteredEntityRef` as variants of `EntityMut` and `EntityRef` that
provide run time checked access to the components included in a given
query.
- Add new methods to `Query` to create "query lens" with a subset of the
access of the initial query.

### Query Builder
The `QueryBuilder` API allows you to define a query at runtime. At it's
most basic use it will simply create a query with the corresponding type
signature:
```rust
let query = QueryBuilder::<Entity, With<A>>::new(&mut world).build();
// is equivalent to
let query = QueryState::<Entity, With<A>>::new(&mut world);
```
Before calling `.build()` you also have the opportunity to add
additional accesses and filters. Here is a simple example where we add
additional filter terms:
```rust
let entity_a = world.spawn((A(0), B(0))).id();
let entity_b = world.spawn((A(0), C(0))).id();

let mut query_a = QueryBuilder::<Entity>::new(&mut world)
    .with::<A>()
    .without::<C>()
    .build();
            
assert_eq!(entity_a, query_a.single(&world));
```
This alone is useful in that allows you to decide which archetypes your
query will match at runtime. However it is also very limited, consider a
case like the following:
```rust
let query_a = QueryBuilder::<&A>::new(&mut world)
// Add an additional access
    .data::<&B>()
    .build();
```
This will grant the query an additional read access to component B
however we have no way of accessing the data while iterating as the type
signature still only includes &A. For an even more concrete example of
this consider dynamic components:
```rust
let query_a = QueryBuilder::<Entity>::new(&mut world)
// Adding a filter is easy since it doesn't need be read later
    .with_id(component_id_a)
// How do I access the data of this component?
    .ref_id(component_id_b)
    .build();
```
With this in mind the `QueryBuilder` API seems somewhat incomplete by
itself, we need some way method of accessing the components dynamically.
So here's one:
### Query Transmutation
If the problem is not having the component in the type signature why not
just add it? This PR also adds transmute methods to `QueryBuilder` and
`QueryState`. Here's a simple example:
```rust
world.spawn(A(0));
world.spawn((A(1), B(0)));
let mut query = QueryBuilder::<()>::new(&mut world)
    .with::<B>()
    .transmute::<&A>()
    .build();

query.iter(&world).for_each(|a| assert_eq!(a.0, 1));
```
The `QueryState` and `QueryBuilder` transmute methods look quite similar
but are different in one respect. Transmuting a builder will always
succeed as it will just add the additional accesses needed for the new
terms if they weren't already included. Transmuting a `QueryState` will
panic in the case that the new type signature would give it access it
didn't already have, for example:
```rust
let query = QueryState::<&A, Option<&B>>::new(&mut world);
/// This is fine, the access for Option<&A> is less restrictive than &A
query.transmute::<Option<&A>>(&world);
/// Oh no, this would allow access to &B on entities that might not have it, so it panics
query.transmute::<&B>(&world);
/// This is right out
query.transmute::<&C>(&world);
```
This is quite an appealing API to also have available on `Query` however
it does pose one additional wrinkle: In order to to change the iterator
we need to create a new `QueryState` to back it. `Query` doesn't own
it's own state though, it just borrows it, so we need a place to borrow
it from. This is why `QueryLens` exists, it is a place to store the new
state so it can be borrowed when you call `.query()` leaving you with an
API like this:
```rust
fn function_that_takes_a_query(query: &Query<&A>) {
    // ...
}

fn system(query: Query<(&A, &B)>) {
    let lens = query.transmute_lens::<&A>();
    let q = lens.query();
    function_that_takes_a_query(&q);
}
```
Now you may be thinking: Hey, wait a second, you introduced the problem
with dynamic components and then described a solution that only works
for static components! Ok, you got me, I guess we need a bit more:
### Filtered Entity References
Currently the only way you can access dynamic components on entities
through a query is with either `EntityMut` or `EntityRef`, however these
can access all components and so conflict with all other accesses. This
PR introduces `FilteredEntityMut` and `FilteredEntityRef` as
alternatives that have additional runtime checking to prevent accessing
components that you shouldn't. This way you can build a query with a
`QueryBuilder` and actually access the components you asked for:
```rust
let mut query = QueryBuilder::<FilteredEntityRef>::new(&mut world)
    .ref_id(component_id_a)
    .with(component_id_b)
    .build();

let entity_ref = query.single(&world);

// Returns Some(Ptr) as we have that component and are allowed to read it
let a = entity_ref.get_by_id(component_id_a);
// Will return None even though the entity does have the component, as we are not allowed to read it
let b = entity_ref.get_by_id(component_id_b);
```
For the most part these new structs have the exact same methods as their
non-filtered equivalents.

Putting all of this together we can do some truly dynamic ECS queries,
check out the `dynamic` example to see it in action:
```
Commands:
    comp, c   Create new components
    spawn, s  Spawn entities
    query, q  Query for entities
Enter a command with no parameters for usage.

> c A, B, C, Data 4  
Component A created with id: 0
Component B created with id: 1
Component C created with id: 2
Component Data created with id: 3

> s A, B, Data 1
Entity spawned with id: 0v0

> s A, C, Data 0
Entity spawned with id: 1v0

> q &Data
0v0: Data: [1, 0, 0, 0]
1v0: Data: [0, 0, 0, 0]

> q B, &mut Data                                                                                     
0v0: Data: [2, 1, 1, 1]

> q B || C, &Data 
0v0: Data: [2, 1, 1, 1]
1v0: Data: [0, 0, 0, 0]
```
## Changelog
 - Add new `transmute_lens` methods to `Query`.
- Add new types `QueryBuilder`, `FilteredEntityMut`, `FilteredEntityRef`
and `QueryLens`
- `update_archetype_component_access` has been removed, archetype
component accesses are now determined by the accesses set in
`update_component_access`
- Added method `set_access` to `WorldQuery`, this is called before
`update_component_access` for queries that have a restricted set of
accesses, such as those built by `QueryBuilder` or `QueryLens`. This is
primarily used by the `FilteredEntity*` variants and has an empty trait
implementation.
- Added method `get_state` to `WorldQuery` as a fallible version of
`init_state` when you don't have `&mut World` access.

## Future Work
Improve performance of `FilteredEntityMut` and `FilteredEntityRef`,
currently they have to determine the accesses a query has in a given
archetype during iteration which is far from ideal, especially since we
already did the work when matching the archetype in the first place. To
avoid making more internal API changes I have left it out of this PR.

---------

Co-authored-by: Mike Hsu <mike.hsu@gmail.com>
2024-01-16 19:16:49 +00:00

223 lines
11 KiB
Rust

use crate::{
archetype::Archetype,
component::{ComponentId, Tick},
entity::Entity,
query::FilteredAccess,
storage::{Table, TableRow},
world::{unsafe_world_cell::UnsafeWorldCell, World},
};
use bevy_utils::all_tuples;
/// Types that can be used as parameters in a [`Query`].
/// Types that implement this should also implement either [`QueryData`] or [`QueryFilter`]
///
/// # Safety
///
/// Implementor must ensure that
/// [`update_component_access`], [`matches_component_set`], and [`fetch`]
/// obey the following:
///
/// - For each component mutably accessed by [`fetch`], [`update_component_access`] should add write access unless read or write access has already been added, in which case it should panic.
/// - For each component readonly accessed by [`fetch`], [`update_component_access`] should add read access unless write access has already been added, in which case it should panic.
/// - If `fetch` mutably accesses the same component twice, [`update_component_access`] should panic.
/// - [`update_component_access`] may not add a `Without` filter for a component unless [`matches_component_set`] always returns `false` when the component set contains that component.
/// - [`update_component_access`] may not add a `With` filter for a component unless [`matches_component_set`] always returns `false` when the component set doesn't contain that component.
/// - In cases where the query represents a disjunction (such as an `Or` filter) where each element is a valid [`WorldQuery`], the following rules must be obeyed:
/// - [`matches_component_set`] must be a disjunction of the element's implementations
/// - [`update_component_access`] must replace the filters with a disjunction of filters
/// - Each filter in that disjunction must be a conjunction of the corresponding element's filter with the previous `access`
///
/// When implementing [`update_component_access`], note that `add_read` and `add_write` both also add a `With` filter, whereas `extend_access` does not change the filters.
///
/// [`fetch`]: Self::fetch
/// [`matches_component_set`]: Self::matches_component_set
/// [`Query`]: crate::system::Query
/// [`update_component_access`]: Self::update_component_access
/// [`QueryData`]: crate::query::QueryData
/// [`QueryFilter`]: crate::query::QueryFilter
pub unsafe trait WorldQuery {
/// The item returned by this [`WorldQuery`]
/// For `QueryData` this will be the item returned by the query.
/// For `QueryFilter` this will be either `()`, or a `bool` indicating whether the entity should be included
/// or a tuple of such things.
type Item<'a>;
/// Per archetype/table state used by this [`WorldQuery`] to fetch [`Self::Item`](WorldQuery::Item)
type Fetch<'a>: Clone;
/// State used to construct a [`Self::Fetch`](WorldQuery::Fetch). This will be cached inside [`QueryState`](crate::query::QueryState),
/// so it is best to move as much data / computation here as possible to reduce the cost of
/// constructing [`Self::Fetch`](WorldQuery::Fetch).
type State: Send + Sync + Sized;
/// This function manually implements subtyping for the query items.
fn shrink<'wlong: 'wshort, 'wshort>(item: Self::Item<'wlong>) -> Self::Item<'wshort>;
/// Creates a new instance of this fetch.
///
/// # Safety
///
/// - `world` must have permission to access any of the components specified in `Self::update_archetype_component_access`.
/// - `state` must have been initialized (via [`WorldQuery::init_state`]) using the same `world` passed
/// in to this function.
unsafe fn init_fetch<'w>(
world: UnsafeWorldCell<'w>,
state: &Self::State,
last_run: Tick,
this_run: Tick,
) -> Self::Fetch<'w>;
/// Returns true if (and only if) every table of every archetype matched by this fetch contains
/// all of the matched components. This is used to select a more efficient "table iterator"
/// for "dense" queries. If this returns true, [`WorldQuery::set_table`] must be used before
/// [`WorldQuery::fetch`] can be called for iterators. If this returns false,
/// [`WorldQuery::set_archetype`] must be used before [`WorldQuery::fetch`] can be called for
/// iterators.
const IS_DENSE: bool;
/// Adjusts internal state to account for the next [`Archetype`]. This will always be called on
/// archetypes that match this [`WorldQuery`].
///
/// # Safety
///
/// - `archetype` and `tables` must be from the same [`World`] that [`WorldQuery::init_state`] was called on.
/// - `table` must correspond to `archetype`.
/// - `state` must be the [`State`](Self::State) that `fetch` was initialized with.
unsafe fn set_archetype<'w>(
fetch: &mut Self::Fetch<'w>,
state: &Self::State,
archetype: &'w Archetype,
table: &'w Table,
);
/// Adjusts internal state to account for the next [`Table`]. This will always be called on tables
/// that match this [`WorldQuery`].
///
/// # Safety
///
/// - `table` must be from the same [`World`] that [`WorldQuery::init_state`] was called on.
/// - `state` must be the [`State`](Self::State) that `fetch` was initialized with.
unsafe fn set_table<'w>(fetch: &mut Self::Fetch<'w>, state: &Self::State, table: &'w Table);
/// Sets available accesses for implementors with dynamic access such as [`FilteredEntityRef`](crate::world::FilteredEntityRef)
/// or [`FilteredEntityMut`](crate::world::FilteredEntityMut).
///
/// Called when constructing a [`QueryLens`](crate::system::QueryLens) or calling [`QueryState::from_builder`](super::QueryState::from_builder)
fn set_access(_state: &mut Self::State, _access: &FilteredAccess<ComponentId>) {}
/// Fetch [`Self::Item`](`WorldQuery::Item`) for either the given `entity` in the current [`Table`],
/// or for the given `entity` in the current [`Archetype`]. This must always be called after
/// [`WorldQuery::set_table`] with a `table_row` in the range of the current [`Table`] or after
/// [`WorldQuery::set_archetype`] with a `entity` in the current archetype.
///
/// # Safety
///
/// Must always be called _after_ [`WorldQuery::set_table`] or [`WorldQuery::set_archetype`]. `entity` and
/// `table_row` must be in the range of the current table and archetype.
unsafe fn fetch<'w>(
fetch: &mut Self::Fetch<'w>,
entity: Entity,
table_row: TableRow,
) -> Self::Item<'w>;
/// Adds any component accesses used by this [`WorldQuery`] to `access`.
// This does not have a default body of `{}` because 99% of cases need to add accesses
// and forgetting to do so would be unsound.
fn update_component_access(state: &Self::State, access: &mut FilteredAccess<ComponentId>);
/// Creates and initializes a [`State`](WorldQuery::State) for this [`WorldQuery`] type.
fn init_state(world: &mut World) -> Self::State;
/// Attempts to initializes a [`State`](WorldQuery::State) for this [`WorldQuery`] type.
fn get_state(world: &World) -> Option<Self::State>;
/// Returns `true` if this query matches a set of components. Otherwise, returns `false`.
fn matches_component_set(
state: &Self::State,
set_contains_id: &impl Fn(ComponentId) -> bool,
) -> bool;
}
macro_rules! impl_tuple_world_query {
($(($name: ident, $state: ident)),*) => {
#[allow(non_snake_case)]
#[allow(clippy::unused_unit)]
/// SAFETY:
/// `fetch` accesses are the conjunction of the subqueries' accesses
/// This is sound because `update_component_access` and `update_archetype_component_access` adds accesses according to the implementations of all the subqueries.
/// `update_component_access` adds all `With` and `Without` filters from the subqueries.
/// This is sound because `matches_component_set` always returns `false` if any the subqueries' implementations return `false`.
unsafe impl<$($name: WorldQuery),*> WorldQuery for ($($name,)*) {
type Fetch<'w> = ($($name::Fetch<'w>,)*);
type Item<'w> = ($($name::Item<'w>,)*);
type State = ($($name::State,)*);
fn shrink<'wlong: 'wshort, 'wshort>(item: Self::Item<'wlong>) -> Self::Item<'wshort> {
let ($($name,)*) = item;
($(
$name::shrink($name),
)*)
}
#[inline]
#[allow(clippy::unused_unit)]
unsafe fn init_fetch<'w>(_world: UnsafeWorldCell<'w>, state: &Self::State, _last_run: Tick, _this_run: Tick) -> Self::Fetch<'w> {
let ($($name,)*) = state;
($($name::init_fetch(_world, $name, _last_run, _this_run),)*)
}
const IS_DENSE: bool = true $(&& $name::IS_DENSE)*;
#[inline]
unsafe fn set_archetype<'w>(
_fetch: &mut Self::Fetch<'w>,
_state: &Self::State,
_archetype: &'w Archetype,
_table: &'w Table
) {
let ($($name,)*) = _fetch;
let ($($state,)*) = _state;
$($name::set_archetype($name, $state, _archetype, _table);)*
}
#[inline]
unsafe fn set_table<'w>(_fetch: &mut Self::Fetch<'w>, _state: &Self::State, _table: &'w Table) {
let ($($name,)*) = _fetch;
let ($($state,)*) = _state;
$($name::set_table($name, $state, _table);)*
}
#[inline(always)]
#[allow(clippy::unused_unit)]
unsafe fn fetch<'w>(
_fetch: &mut Self::Fetch<'w>,
_entity: Entity,
_table_row: TableRow
) -> Self::Item<'w> {
let ($($name,)*) = _fetch;
($($name::fetch($name, _entity, _table_row),)*)
}
fn update_component_access(state: &Self::State, _access: &mut FilteredAccess<ComponentId>) {
let ($($name,)*) = state;
$($name::update_component_access($name, _access);)*
}
fn init_state(_world: &mut World) -> Self::State {
($($name::init_state(_world),)*)
}
fn get_state(_world: &World) -> Option<Self::State> {
Some(($($name::get_state(_world)?,)*))
}
fn matches_component_set(state: &Self::State, _set_contains_id: &impl Fn(ComponentId) -> bool) -> bool {
let ($($name,)*) = state;
true $(&& $name::matches_component_set($name, _set_contains_id))*
}
}
};
}
all_tuples!(impl_tuple_world_query, 0, 15, F, S);