bevy/crates/bevy_ecs/src/storage/blob_vec.rs
Tristan Guichaoua 33c7a2251e
bevy_ecs address trivial cases of unsafe_op_in_unsafe_fn (#11861)
# Objective

- Part of #11590
- Fix `unsafe_op_in_unsafe_fn` for trivial cases in bevy_ecs

## Solution

Fix `unsafe_op_in_unsafe_fn` in bevy_ecs for trivial cases, i.e., add an
`unsafe` block when the safety comment already exists or add a comment
like "The invariants are uphold by the caller".

---------

Co-authored-by: James Liu <contact@jamessliu.com>
2024-02-22 00:04:38 +00:00

716 lines
28 KiB
Rust

use std::{
alloc::{handle_alloc_error, Layout},
cell::UnsafeCell,
num::NonZeroUsize,
ptr::NonNull,
};
use bevy_ptr::{OwningPtr, Ptr, PtrMut};
use bevy_utils::OnDrop;
/// A flat, type-erased data storage type
///
/// Used to densely store homogeneous ECS data. A blob is usually just an arbitrary block of contiguous memory without any identity, and
/// could be used to represent any arbitrary data (i.e. string, arrays, etc). This type is an extendable and re-allocatable blob, which makes
/// it a blobby Vec, a `BlobVec`.
pub(super) struct BlobVec {
item_layout: Layout,
capacity: usize,
/// Number of elements, not bytes
len: usize,
// the `data` ptr's layout is always `array_layout(item_layout, capacity)`
data: NonNull<u8>,
// None if the underlying type doesn't need to be dropped
drop: Option<unsafe fn(OwningPtr<'_>)>,
}
// We want to ignore the `drop` field in our `Debug` impl
impl std::fmt::Debug for BlobVec {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("BlobVec")
.field("item_layout", &self.item_layout)
.field("capacity", &self.capacity)
.field("len", &self.len)
.field("data", &self.data)
.finish()
}
}
impl BlobVec {
/// Creates a new [`BlobVec`] with the specified `capacity`.
///
/// `drop` is an optional function pointer that is meant to be invoked when any element in the [`BlobVec`]
/// should be dropped. For all Rust-based types, this should match 1:1 with the implementation of [`Drop`]
/// if present, and should be `None` if `T: !Drop`. For non-Rust based types, this should match any cleanup
/// processes typically associated with the stored element.
///
/// # Safety
///
/// `drop` should be safe to call with an [`OwningPtr`] pointing to any item that's been pushed into this [`BlobVec`].
///
/// If `drop` is `None`, the items will be leaked. This should generally be set as None based on [`needs_drop`].
///
/// [`needs_drop`]: core::mem::needs_drop
pub unsafe fn new(
item_layout: Layout,
drop: Option<unsafe fn(OwningPtr<'_>)>,
capacity: usize,
) -> BlobVec {
let align = NonZeroUsize::new(item_layout.align()).expect("alignment must be > 0");
let data = bevy_ptr::dangling_with_align(align);
if item_layout.size() == 0 {
BlobVec {
data,
// ZST `BlobVec` max size is `usize::MAX`, and `reserve_exact` for ZST assumes
// the capacity is always `usize::MAX` and panics if it overflows.
capacity: usize::MAX,
len: 0,
item_layout,
drop,
}
} else {
let mut blob_vec = BlobVec {
data,
capacity: 0,
len: 0,
item_layout,
drop,
};
blob_vec.reserve_exact(capacity);
blob_vec
}
}
/// Returns the number of elements in the vector.
#[inline]
pub fn len(&self) -> usize {
self.len
}
/// Returns `true` if the vector contains no elements.
#[inline]
pub fn is_empty(&self) -> bool {
self.len == 0
}
/// Returns the total number of elements the vector can hold without reallocating.
#[inline]
pub fn capacity(&self) -> usize {
self.capacity
}
/// Returns the [`Layout`] of the element type stored in the vector.
#[inline]
pub fn layout(&self) -> Layout {
self.item_layout
}
/// Reserves the minimum capacity for at least `additional` more elements to be inserted in the given `BlobVec`.
/// After calling `reserve_exact`, capacity will be greater than or equal to `self.len() + additional`. Does nothing if
/// the capacity is already sufficient.
///
/// Note that the allocator may give the collection more space than it requests. Therefore, capacity can not be relied upon
/// to be precisely minimal.
///
/// # Panics
///
/// Panics if new capacity overflows `usize`.
pub fn reserve_exact(&mut self, additional: usize) {
let available_space = self.capacity - self.len;
if available_space < additional {
// SAFETY: `available_space < additional`, so `additional - available_space > 0`
let increment = unsafe { NonZeroUsize::new_unchecked(additional - available_space) };
self.grow_exact(increment);
}
}
/// Reserves the minimum capacity for at least `additional` more elements to be inserted in the given `BlobVec`.
#[inline]
pub fn reserve(&mut self, additional: usize) {
/// Similar to `reserve_exact`. This method ensures that the capacity will grow at least `self.capacity()` if there is no
/// enough space to hold `additional` more elements.
#[cold]
fn do_reserve(slf: &mut BlobVec, additional: usize) {
let increment = slf.capacity.max(additional - (slf.capacity - slf.len));
let increment = NonZeroUsize::new(increment).unwrap();
slf.grow_exact(increment);
}
if self.capacity - self.len < additional {
do_reserve(self, additional);
}
}
/// Grows the capacity by `increment` elements.
///
/// # Panics
///
/// Panics if the new capacity overflows `usize`.
/// For ZST it panics unconditionally because ZST `BlobVec` capacity
/// is initialized to `usize::MAX` and always stays that way.
fn grow_exact(&mut self, increment: NonZeroUsize) {
let new_capacity = self
.capacity
.checked_add(increment.get())
.expect("capacity overflow");
let new_layout =
array_layout(&self.item_layout, new_capacity).expect("array layout should be valid");
let new_data = if self.capacity == 0 {
// SAFETY:
// - layout has non-zero size as per safety requirement
unsafe { std::alloc::alloc(new_layout) }
} else {
// SAFETY:
// - ptr was be allocated via this allocator
// - the layout of the ptr was `array_layout(self.item_layout, self.capacity)`
// - `item_layout.size() > 0` and `new_capacity > 0`, so the layout size is non-zero
// - "new_size, when rounded up to the nearest multiple of layout.align(), must not overflow (i.e., the rounded value must be less than usize::MAX)",
// since the item size is always a multiple of its align, the rounding cannot happen
// here and the overflow is handled in `array_layout`
unsafe {
std::alloc::realloc(
self.get_ptr_mut().as_ptr(),
array_layout(&self.item_layout, self.capacity)
.expect("array layout should be valid"),
new_layout.size(),
)
}
};
self.data = NonNull::new(new_data).unwrap_or_else(|| handle_alloc_error(new_layout));
self.capacity = new_capacity;
}
/// Initializes the value at `index` to `value`. This function does not do any bounds checking.
///
/// # Safety
/// - index must be in bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this [`BlobVec`]'s
/// `item_layout`, must have been previously allocated.
#[inline]
pub unsafe fn initialize_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
let ptr = self.get_unchecked_mut(index);
std::ptr::copy_nonoverlapping::<u8>(value.as_ptr(), ptr.as_ptr(), self.item_layout.size());
}
/// Replaces the value at `index` with `value`. This function does not do any bounds checking.
///
/// # Safety
/// - index must be in-bounds
/// - the memory in the [`BlobVec`] starting at index `index`, of a size matching this
/// [`BlobVec`]'s `item_layout`, must have been previously initialized with an item matching
/// this [`BlobVec`]'s `item_layout`
/// - the memory at `*value` must also be previously initialized with an item matching this
/// [`BlobVec`]'s `item_layout`
pub unsafe fn replace_unchecked(&mut self, index: usize, value: OwningPtr<'_>) {
debug_assert!(index < self.len());
// Pointer to the value in the vector that will get replaced.
// SAFETY: The caller ensures that `index` fits in this vector.
let destination = NonNull::from(unsafe { self.get_unchecked_mut(index) });
let source = value.as_ptr();
if let Some(drop) = self.drop {
// Temporarily set the length to zero, so that if `drop` panics the caller
// will not be left with a `BlobVec` containing a dropped element within
// its initialized range.
let old_len = self.len;
self.len = 0;
// Transfer ownership of the old value out of the vector, so it can be dropped.
// SAFETY:
// - `destination` was obtained from a `PtrMut` in this vector, which ensures it is non-null,
// well-aligned for the underlying type, and has proper provenance.
// - The storage location will get overwritten with `value` later, which ensures
// that the element will not get observed or double dropped later.
// - If a panic occurs, `self.len` will remain `0`, which ensures a double-drop
// does not occur. Instead, all elements will be forgotten.
let old_value = unsafe { OwningPtr::new(destination) };
// This closure will run in case `drop()` panics,
// which ensures that `value` does not get forgotten.
let on_unwind = OnDrop::new(|| drop(value));
drop(old_value);
// If the above code does not panic, make sure that `value` doesn't get dropped.
core::mem::forget(on_unwind);
// Make the vector's contents observable again, since panics are no longer possible.
self.len = old_len;
}
// Copy the new value into the vector, overwriting the previous value.
// SAFETY:
// - `source` and `destination` were obtained from `OwningPtr`s, which ensures they are
// valid for both reads and writes.
// - The value behind `source` will only be dropped if the above branch panics,
// so it must still be initialized and it is safe to transfer ownership into the vector.
// - `source` and `destination` were obtained from different memory locations,
// both of which we have exclusive access to, so they are guaranteed not to overlap.
unsafe {
std::ptr::copy_nonoverlapping::<u8>(
source,
destination.as_ptr(),
self.item_layout.size(),
);
}
}
/// Appends an element to the back of the vector.
///
/// # Safety
/// The `value` must match the [`layout`](`BlobVec::layout`) of the elements in the [`BlobVec`].
#[inline]
pub unsafe fn push(&mut self, value: OwningPtr<'_>) {
self.reserve(1);
let index = self.len;
self.len += 1;
self.initialize_unchecked(index, value);
}
/// Forces the length of the vector to `len`.
///
/// # Safety
/// `len` must be <= `capacity`. if length is decreased, "out of bounds" items must be dropped.
/// Newly added items must be immediately populated with valid values and length must be
/// increased. For better unwind safety, call [`BlobVec::set_len`] _after_ populating a new
/// value.
#[inline]
pub unsafe fn set_len(&mut self, len: usize) {
debug_assert!(len <= self.capacity());
self.len = len;
}
/// Performs a "swap remove" at the given `index`, which removes the item at `index` and moves
/// the last item in the [`BlobVec`] to `index` (if `index` is not the last item). It is the
/// caller's responsibility to drop the returned pointer, if that is desirable.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is less than `self.len()`.
#[inline]
#[must_use = "The returned pointer should be used to dropped the removed element"]
pub unsafe fn swap_remove_and_forget_unchecked(&mut self, index: usize) -> OwningPtr<'_> {
debug_assert!(index < self.len());
// Since `index` must be strictly less than `self.len` and `index` is at least zero,
// `self.len` must be at least one. Thus, this cannot underflow.
let new_len = self.len - 1;
let size = self.item_layout.size();
if index != new_len {
std::ptr::swap_nonoverlapping::<u8>(
self.get_unchecked_mut(index).as_ptr(),
self.get_unchecked_mut(new_len).as_ptr(),
size,
);
}
self.len = new_len;
// Cannot use get_unchecked here as this is technically out of bounds after changing len.
// SAFETY:
// - `new_len` is less than the old len, so it must fit in this vector's allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
let p = unsafe { self.get_ptr_mut().byte_add(new_len * size) };
p.promote()
}
/// Removes the value at `index` and copies the value stored into `ptr`.
/// Does not do any bounds checking on `index`.
/// The removed element is replaced by the last element of the `BlobVec`.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is < `self.len()`
/// and that `self[index]` has been properly initialized.
#[inline]
pub unsafe fn swap_remove_unchecked(&mut self, index: usize, ptr: PtrMut<'_>) {
debug_assert!(index < self.len());
let last = self.get_unchecked_mut(self.len - 1).as_ptr();
let target = self.get_unchecked_mut(index).as_ptr();
// Copy the item at the index into the provided ptr
std::ptr::copy_nonoverlapping::<u8>(target, ptr.as_ptr(), self.item_layout.size());
// Recompress the storage by moving the previous last element into the
// now-free row overwriting the previous data. The removed row may be the last
// one so a non-overlapping copy must not be used here.
std::ptr::copy::<u8>(last, target, self.item_layout.size());
// Invalidate the data stored in the last row, as it has been moved
self.len -= 1;
}
/// Removes the value at `index` and drops it.
/// Does not do any bounds checking on `index`.
/// The removed element is replaced by the last element of the `BlobVec`.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index` is `< self.len()`.
#[inline]
pub unsafe fn swap_remove_and_drop_unchecked(&mut self, index: usize) {
debug_assert!(index < self.len());
let drop = self.drop;
let value = self.swap_remove_and_forget_unchecked(index);
if let Some(drop) = drop {
drop(value);
}
}
/// Returns a reference to the element at `index`, without doing bounds checking.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index < self.len()`.
#[inline]
pub unsafe fn get_unchecked(&self, index: usize) -> Ptr<'_> {
debug_assert!(index < self.len());
let size = self.item_layout.size();
// SAFETY:
// - The caller ensures that `index` fits in this vector,
// so this operation will not overflow the original allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
unsafe { self.get_ptr().byte_add(index * size) }
}
/// Returns a mutable reference to the element at `index`, without doing bounds checking.
///
/// # Safety
/// It is the caller's responsibility to ensure that `index < self.len()`.
#[inline]
pub unsafe fn get_unchecked_mut(&mut self, index: usize) -> PtrMut<'_> {
debug_assert!(index < self.len());
let size = self.item_layout.size();
// SAFETY:
// - The caller ensures that `index` fits in this vector,
// so this operation will not overflow the original allocation.
// - `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
unsafe { self.get_ptr_mut().byte_add(index * size) }
}
/// Gets a [`Ptr`] to the start of the vec
#[inline]
pub fn get_ptr(&self) -> Ptr<'_> {
// SAFETY: the inner data will remain valid for as long as 'self.
unsafe { Ptr::new(self.data) }
}
/// Gets a [`PtrMut`] to the start of the vec
#[inline]
pub fn get_ptr_mut(&mut self) -> PtrMut<'_> {
// SAFETY: the inner data will remain valid for as long as 'self.
unsafe { PtrMut::new(self.data) }
}
/// Get a reference to the entire [`BlobVec`] as if it were an array with elements of type `T`
///
/// # Safety
/// The type `T` must be the type of the items in this [`BlobVec`].
pub unsafe fn get_slice<T>(&self) -> &[UnsafeCell<T>] {
// SAFETY: the inner data will remain valid for as long as 'self.
unsafe { std::slice::from_raw_parts(self.data.as_ptr() as *const UnsafeCell<T>, self.len) }
}
/// Clears the vector, removing (and dropping) all values.
///
/// Note that this method has no effect on the allocated capacity of the vector.
pub fn clear(&mut self) {
let len = self.len;
// We set len to 0 _before_ dropping elements for unwind safety. This ensures we don't
// accidentally drop elements twice in the event of a drop impl panicking.
self.len = 0;
if let Some(drop) = self.drop {
let size = self.item_layout.size();
for i in 0..len {
// SAFETY:
// * 0 <= `i` < `len`, so `i * size` must be in bounds for the allocation.
// * `size` is a multiple of the erased type's alignment,
// so adding a multiple of `size` will preserve alignment.
// * The item is left unreachable so it can be safely promoted to an `OwningPtr`.
// NOTE: `self.get_unchecked_mut(i)` cannot be used here, since the `debug_assert`
// would panic due to `self.len` being set to 0.
let item = unsafe { self.get_ptr_mut().byte_add(i * size).promote() };
// SAFETY: `item` was obtained from this `BlobVec`, so its underlying type must match `drop`.
unsafe { drop(item) };
}
}
}
}
impl Drop for BlobVec {
fn drop(&mut self) {
self.clear();
let array_layout =
array_layout(&self.item_layout, self.capacity).expect("array layout should be valid");
if array_layout.size() > 0 {
// SAFETY: data ptr layout is correct, swap_scratch ptr layout is correct
unsafe {
std::alloc::dealloc(self.get_ptr_mut().as_ptr(), array_layout);
}
}
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn array_layout(layout: &Layout, n: usize) -> Option<Layout> {
let (array_layout, offset) = repeat_layout(layout, n)?;
debug_assert_eq!(layout.size(), offset);
Some(array_layout)
}
// TODO: replace with `Layout::repeat` if/when it stabilizes
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
fn repeat_layout(layout: &Layout, n: usize) -> Option<(Layout, usize)> {
// This cannot overflow. Quoting from the invariant of Layout:
// > `size`, when rounded up to the nearest multiple of `align`,
// > must not overflow (i.e., the rounded value must be less than
// > `usize::MAX`)
let padded_size = layout.size() + padding_needed_for(layout, layout.align());
let alloc_size = padded_size.checked_mul(n)?;
// SAFETY: self.align is already known to be valid and alloc_size has been
// padded already.
unsafe {
Some((
Layout::from_size_align_unchecked(alloc_size, layout.align()),
padded_size,
))
}
}
/// From <https://doc.rust-lang.org/beta/src/core/alloc/layout.rs.html>
const fn padding_needed_for(layout: &Layout, align: usize) -> usize {
let len = layout.size();
// Rounded up value is:
// len_rounded_up = (len + align - 1) & !(align - 1);
// and then we return the padding difference: `len_rounded_up - len`.
//
// We use modular arithmetic throughout:
//
// 1. align is guaranteed to be > 0, so align - 1 is always
// valid.
//
// 2. `len + align - 1` can overflow by at most `align - 1`,
// so the &-mask with `!(align - 1)` will ensure that in the
// case of overflow, `len_rounded_up` will itself be 0.
// Thus the returned padding, when added to `len`, yields 0,
// which trivially satisfies the alignment `align`.
//
// (Of course, attempts to allocate blocks of memory whose
// size and padding overflow in the above manner should cause
// the allocator to yield an error anyway.)
let len_rounded_up = len.wrapping_add(align).wrapping_sub(1) & !align.wrapping_sub(1);
len_rounded_up.wrapping_sub(len)
}
#[cfg(test)]
mod tests {
use crate as bevy_ecs; // required for derive macros
use crate::{component::Component, ptr::OwningPtr, world::World};
use super::BlobVec;
use std::{alloc::Layout, cell::RefCell, mem, rc::Rc};
unsafe fn drop_ptr<T>(x: OwningPtr<'_>) {
// SAFETY: The pointer points to a valid value of type `T` and it is safe to drop this value.
unsafe {
x.drop_as::<T>();
}
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn push<T>(blob_vec: &mut BlobVec, value: T) {
OwningPtr::make(value, |ptr| {
blob_vec.push(ptr);
});
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`
unsafe fn swap_remove<T>(blob_vec: &mut BlobVec, index: usize) -> T {
assert!(index < blob_vec.len());
let value = blob_vec.swap_remove_and_forget_unchecked(index);
value.read::<T>()
}
/// # Safety
///
/// `blob_vec` must have a layout that matches `Layout::new::<T>()`, it most store a valid `T`
/// value at the given `index`
unsafe fn get_mut<T>(blob_vec: &mut BlobVec, index: usize) -> &mut T {
assert!(index < blob_vec.len());
blob_vec.get_unchecked_mut(index).deref_mut::<T>()
}
#[test]
fn resize_test() {
let item_layout = Layout::new::<usize>();
// SAFETY: `drop` fn is `None`, usize doesn't need dropping
let mut blob_vec = unsafe { BlobVec::new(item_layout, None, 64) };
// SAFETY: `i` is a usize, i.e. the type corresponding to `item_layout`
unsafe {
for i in 0..1_000 {
push(&mut blob_vec, i as usize);
}
}
assert_eq!(blob_vec.len(), 1_000);
assert_eq!(blob_vec.capacity(), 1_024);
}
#[derive(Debug, Eq, PartialEq, Clone)]
struct Foo {
a: u8,
b: String,
drop_counter: Rc<RefCell<usize>>,
}
impl Drop for Foo {
fn drop(&mut self) {
*self.drop_counter.borrow_mut() += 1;
}
}
#[test]
fn blob_vec() {
let drop_counter = Rc::new(RefCell::new(0));
{
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
// SAFETY: drop is able to drop a value of its `item_layout`
let mut blob_vec = unsafe { BlobVec::new(item_layout, Some(drop), 2) };
assert_eq!(blob_vec.capacity(), 2);
// SAFETY: the following code only deals with values of type `Foo`, which satisfies the safety requirement of `push`, `get_mut` and `swap_remove` that the
// values have a layout compatible to the blob vec's `item_layout`.
// Every index is in range.
unsafe {
let foo1 = Foo {
a: 42,
b: "abc".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo1.clone());
assert_eq!(blob_vec.len(), 1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
let mut foo2 = Foo {
a: 7,
b: "xyz".to_string(),
drop_counter: drop_counter.clone(),
};
push::<Foo>(&mut blob_vec, foo2.clone());
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 2);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo1);
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1), &foo2);
get_mut::<Foo>(&mut blob_vec, 1).a += 1;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 1).a, 8);
let foo3 = Foo {
a: 16,
b: "123".to_string(),
drop_counter: drop_counter.clone(),
};
push(&mut blob_vec, foo3.clone());
assert_eq!(blob_vec.len(), 3);
assert_eq!(blob_vec.capacity(), 4);
let last_index = blob_vec.len() - 1;
let value = swap_remove::<Foo>(&mut blob_vec, last_index);
assert_eq!(foo3, value);
assert_eq!(blob_vec.len(), 2);
assert_eq!(blob_vec.capacity(), 4);
let value = swap_remove::<Foo>(&mut blob_vec, 0);
assert_eq!(foo1, value);
assert_eq!(blob_vec.len(), 1);
assert_eq!(blob_vec.capacity(), 4);
foo2.a = 8;
assert_eq!(get_mut::<Foo>(&mut blob_vec, 0), &foo2);
}
}
assert_eq!(*drop_counter.borrow(), 6);
}
#[test]
fn blob_vec_drop_empty_capacity() {
let item_layout = Layout::new::<Foo>();
let drop = drop_ptr::<Foo>;
// SAFETY: drop is able to drop a value of its `item_layout`
let _ = unsafe { BlobVec::new(item_layout, Some(drop), 0) };
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn blob_vec_zst_size_overflow() {
// SAFETY: no drop is correct drop for `()`.
let mut blob_vec = unsafe { BlobVec::new(Layout::new::<()>(), None, 0) };
assert_eq!(usize::MAX, blob_vec.capacity(), "Self-check");
// SAFETY: Because `()` is a ZST trivial drop type, and because `BlobVec` capacity
// is always `usize::MAX` for ZSTs, we can arbitrarily set the length
// and still be sound.
unsafe {
blob_vec.set_len(usize::MAX);
}
// SAFETY: `BlobVec` was initialized for `()`, so it is safe to push `()` to it.
unsafe {
OwningPtr::make((), |ptr| {
// This should panic because len is usize::MAX, remaining capacity is 0.
blob_vec.push(ptr);
});
}
}
#[test]
#[should_panic(expected = "capacity overflow")]
fn blob_vec_capacity_overflow() {
// SAFETY: no drop is correct drop for `u32`.
let mut blob_vec = unsafe { BlobVec::new(Layout::new::<u32>(), None, 0) };
assert_eq!(0, blob_vec.capacity(), "Self-check");
OwningPtr::make(17u32, |ptr| {
// SAFETY: we push the value of correct type.
unsafe {
blob_vec.push(ptr);
}
});
blob_vec.reserve_exact(usize::MAX);
}
#[test]
fn aligned_zst() {
// NOTE: This test is explicitly for uncovering potential UB with miri.
#[derive(Component)]
#[repr(align(32))]
struct Zst;
let mut world = World::default();
world.spawn(Zst);
world.spawn(Zst);
world.spawn(Zst);
world.spawn_empty();
let mut count = 0;
let mut q = world.query::<&Zst>();
for zst in q.iter(&world) {
// Ensure that the references returned are properly aligned.
assert_eq!(zst as *const Zst as usize % mem::align_of::<Zst>(), 0);
count += 1;
}
assert_eq!(count, 3);
}
}