bevy/crates/bevy_pbr/src/render/clustered_forward.wgsl
Robert Swain c6222f1acc Separate out PBR lighting, shadows, clustered forward, and utils from pbr.wgsl (#4938)
# Objective

- Builds on top of #4901 
- Separate out PBR lighting, shadows, clustered forward, and utils from `pbr.wgsl` as part of making the PBR code more reusable and extensible.
- See #3969 for details.

## Solution

- Add `bevy_pbr::utils`, `bevy_pbr::clustered_forward`, `bevy_pbr::lighting`, `bevy_pbr::shadows` shader imports exposing many shader functions for external use
- Split `PI`, `saturate()`, `hsv2rgb()`, and `random1D()` into `bevy_pbr::utils`
- Split clustered-forward-specific functions into `bevy_pbr::clustered_forward`, including moving the debug visualization code into a `cluster_debug_visualization()` function in that import
- Split PBR lighting functions into `bevy_pbr::lighting`
- Split shadow functions into `bevy_pbr::shadows`

---

## Changelog

- Added: `bevy_pbr::utils`, `bevy_pbr::clustered_forward`, `bevy_pbr::lighting`, `bevy_pbr::shadows` shader imports exposing many shader functions for external use
  - Split `PI`, `saturate()`, `hsv2rgb()`, and `random1D()` into `bevy_pbr::utils`
  - Split clustered-forward-specific functions into `bevy_pbr::clustered_forward`, including moving the debug visualization code into a `cluster_debug_visualization()` function in that import
  - Split PBR lighting functions into `bevy_pbr::lighting`
  - Split shadow functions into `bevy_pbr::shadows`
2022-06-14 00:58:30 +00:00

100 lines
4.6 KiB
WebGPU Shading Language

#define_import_path bevy_pbr::clustered_forward
// NOTE: Keep in sync with bevy_pbr/src/light.rs
fn view_z_to_z_slice(view_z: f32, is_orthographic: bool) -> u32 {
var z_slice: u32 = 0u;
if (is_orthographic) {
// NOTE: view_z is correct in the orthographic case
z_slice = u32(floor((view_z - lights.cluster_factors.z) * lights.cluster_factors.w));
} else {
// NOTE: had to use -view_z to make it positive else log(negative) is nan
z_slice = u32(log(-view_z) * lights.cluster_factors.z - lights.cluster_factors.w + 1.0);
}
// NOTE: We use min as we may limit the far z plane used for clustering to be closeer than
// the furthest thing being drawn. This means that we need to limit to the maximum cluster.
return min(z_slice, lights.cluster_dimensions.z - 1u);
}
fn fragment_cluster_index(frag_coord: vec2<f32>, view_z: f32, is_orthographic: bool) -> u32 {
let xy = vec2<u32>(floor(frag_coord * lights.cluster_factors.xy));
let z_slice = view_z_to_z_slice(view_z, is_orthographic);
// NOTE: Restricting cluster index to avoid undefined behavior when accessing uniform buffer
// arrays based on the cluster index.
return min(
(xy.y * lights.cluster_dimensions.x + xy.x) * lights.cluster_dimensions.z + z_slice,
lights.cluster_dimensions.w - 1u
);
}
// this must match CLUSTER_COUNT_SIZE in light.rs
let CLUSTER_COUNT_SIZE = 13u;
fn unpack_offset_and_count(cluster_index: u32) -> vec2<u32> {
#ifdef NO_STORAGE_BUFFERS_SUPPORT
let offset_and_count = cluster_offsets_and_counts.data[cluster_index >> 2u][cluster_index & ((1u << 2u) - 1u)];
return vec2<u32>(
// The offset is stored in the upper 32 - CLUSTER_COUNT_SIZE = 19 bits
(offset_and_count >> CLUSTER_COUNT_SIZE) & ((1u << 32u - CLUSTER_COUNT_SIZE) - 1u),
// The count is stored in the lower CLUSTER_COUNT_SIZE = 13 bits
offset_and_count & ((1u << CLUSTER_COUNT_SIZE) - 1u)
);
#else
return cluster_offsets_and_counts.data[cluster_index];
#endif
}
fn get_light_id(index: u32) -> u32 {
#ifdef NO_STORAGE_BUFFERS_SUPPORT
// The index is correct but in cluster_light_index_lists we pack 4 u8s into a u32
// This means the index into cluster_light_index_lists is index / 4
let indices = cluster_light_index_lists.data[index >> 4u][(index >> 2u) & ((1u << 2u) - 1u)];
// And index % 4 gives the sub-index of the u8 within the u32 so we shift by 8 * sub-index
return (indices >> (8u * (index & ((1u << 2u) - 1u)))) & ((1u << 8u) - 1u);
#else
return cluster_light_index_lists.data[index];
#endif
}
fn cluster_debug_visualization(
output_color: vec4<f32>,
view_z: f32,
is_orthographic: bool,
offset_and_count: vec2<u32>,
cluster_index: u32,
) -> vec4<f32> {
// Cluster allocation debug (using 'over' alpha blending)
#ifdef CLUSTERED_FORWARD_DEBUG_Z_SLICES
// NOTE: This debug mode visualises the z-slices
let cluster_overlay_alpha = 0.1;
var z_slice: u32 = view_z_to_z_slice(view_z, is_orthographic);
// A hack to make the colors alternate a bit more
if ((z_slice & 1u) == 1u) {
z_slice = z_slice + lights.cluster_dimensions.z / 2u;
}
let slice_color = hsv2rgb(f32(z_slice) / f32(lights.cluster_dimensions.z + 1u), 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * slice_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_Z_SLICES
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY
// NOTE: This debug mode visualises the number of lights within the cluster that contains
// the fragment. It shows a sort of lighting complexity measure.
let cluster_overlay_alpha = 0.1;
let max_light_complexity_per_cluster = 64.0;
output_color.r = (1.0 - cluster_overlay_alpha) * output_color.r
+ cluster_overlay_alpha * smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_count[1]));
output_color.g = (1.0 - cluster_overlay_alpha) * output_color.g
+ cluster_overlay_alpha * (1.0 - smoothStep(0.0, max_light_complexity_per_cluster, f32(offset_and_count[1])));
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_LIGHT_COMPLEXITY
#ifdef CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
// NOTE: Visualizes the cluster to which the fragment belongs
let cluster_overlay_alpha = 0.1;
let cluster_color = hsv2rgb(random1D(f32(cluster_index)), 1.0, 0.5);
output_color = vec4<f32>(
(1.0 - cluster_overlay_alpha) * output_color.rgb + cluster_overlay_alpha * cluster_color,
output_color.a
);
#endif // CLUSTERED_FORWARD_DEBUG_CLUSTER_COHERENCY
return output_color;
}