bevy/examples/gizmos/axes.rs
Clar Fon efda7f3f9c
Simpler lint fixes: makes ci lints work but disables a lint for now (#15376)
Takes the first two commits from #15375 and adds suggestions from this
comment:
https://github.com/bevyengine/bevy/pull/15375#issuecomment-2366968300

See #15375 for more reasoning/motivation.

## Rebasing (rerunning)

```rust
git switch simpler-lint-fixes
git reset --hard main
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "rustfmt"
cargo clippy --workspace --all-targets --all-features --fix
cargo fmt --all -- --unstable-features --config normalize_comments=true,imports_granularity=Crate
cargo fmt --all
git add --update
git commit --message "clippy"
git cherry-pick e6c0b94f6795222310fb812fa5c4512661fc7887
```
2024-09-24 11:42:59 +00:00

228 lines
6.9 KiB
Rust

//! This example demonstrates the implementation and behavior of the axes gizmo.
use bevy::{prelude::*, render::primitives::Aabb};
use rand::{Rng, SeedableRng};
use rand_chacha::ChaCha8Rng;
use std::f32::consts::PI;
const TRANSITION_DURATION: f32 = 2.0;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, (move_cubes, draw_axes).chain())
.run();
}
/// The `ShowAxes` component is attached to an entity to get the `draw_axes` system to
/// display axes according to its Transform component.
#[derive(Component)]
struct ShowAxes;
/// The `TransformTracking` component keeps track of the data we need to interpolate
/// between two transforms in our example.
#[derive(Component)]
struct TransformTracking {
/// The initial transform of the cube during the move
initial_transform: Transform,
/// The target transform of the cube during the move
target_transform: Transform,
/// The progress of the cube during the move in seconds
progress: f32,
}
#[derive(Resource)]
struct SeededRng(ChaCha8Rng);
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// We're seeding the PRNG here to make this example deterministic for testing purposes.
// This isn't strictly required in practical use unless you need your app to be deterministic.
let mut rng = ChaCha8Rng::seed_from_u64(19878367467713);
// Lights...
commands.spawn(PointLightBundle {
point_light: PointLight {
shadows_enabled: true,
..default()
},
transform: Transform::from_xyz(2., 6., 0.),
..default()
});
// Camera...
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0., 1.5, -8.).looking_at(Vec3::new(0., -0.5, 0.), Vec3::Y),
..default()
});
// Action! (Our cubes that are going to move)
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(1., 1., 1.)),
material: materials.add(Color::srgb(0.8, 0.7, 0.6)),
..default()
},
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(&mut rng),
progress: 0.0,
},
));
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(0.5, 0.5, 0.5)),
material: materials.add(Color::srgb(0.6, 0.7, 0.8)),
..default()
},
ShowAxes,
TransformTracking {
initial_transform: default(),
target_transform: random_transform(&mut rng),
progress: 0.0,
},
));
// A plane to give a sense of place
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(20., 20.)),
material: materials.add(Color::srgb(0.1, 0.1, 0.1)),
transform: Transform::from_xyz(0., -2., 0.),
..default()
});
commands.insert_resource(SeededRng(rng));
}
// This system draws the axes based on the cube's transform, with length based on the size of
// the entity's axis-aligned bounding box (AABB).
fn draw_axes(mut gizmos: Gizmos, query: Query<(&Transform, &Aabb), With<ShowAxes>>) {
for (&transform, &aabb) in &query {
let length = aabb.half_extents.length();
gizmos.axes(transform, length);
}
}
// This system changes the cubes' transforms to interpolate between random transforms
fn move_cubes(
mut query: Query<(&mut Transform, &mut TransformTracking)>,
time: Res<Time>,
mut rng: ResMut<SeededRng>,
) {
for (mut transform, mut tracking) in &mut query {
*transform = interpolate_transforms(
tracking.initial_transform,
tracking.target_transform,
tracking.progress / TRANSITION_DURATION,
);
if tracking.progress < TRANSITION_DURATION {
tracking.progress += time.delta_seconds();
} else {
tracking.initial_transform = *transform;
tracking.target_transform = random_transform(&mut rng.0);
tracking.progress = 0.0;
}
}
}
// Helper functions for random transforms and interpolation:
const TRANSLATION_BOUND_LOWER_X: f32 = -5.;
const TRANSLATION_BOUND_UPPER_X: f32 = 5.;
const TRANSLATION_BOUND_LOWER_Y: f32 = -1.;
const TRANSLATION_BOUND_UPPER_Y: f32 = 1.;
const TRANSLATION_BOUND_LOWER_Z: f32 = -2.;
const TRANSLATION_BOUND_UPPER_Z: f32 = 6.;
const SCALING_BOUND_LOWER_LOG: f32 = -1.2;
const SCALING_BOUND_UPPER_LOG: f32 = 1.2;
fn random_transform(rng: &mut impl Rng) -> Transform {
Transform {
translation: random_translation(rng),
rotation: random_rotation(rng),
scale: random_scale(rng),
}
}
fn random_translation(rng: &mut impl Rng) -> Vec3 {
let x = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_X - TRANSLATION_BOUND_LOWER_X)
+ TRANSLATION_BOUND_LOWER_X;
let y = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_Y - TRANSLATION_BOUND_LOWER_Y)
+ TRANSLATION_BOUND_LOWER_Y;
let z = rng.gen::<f32>() * (TRANSLATION_BOUND_UPPER_Z - TRANSLATION_BOUND_LOWER_Z)
+ TRANSLATION_BOUND_LOWER_Z;
Vec3::new(x, y, z)
}
fn random_scale(rng: &mut impl Rng) -> Vec3 {
let x_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let y_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
let z_factor_log = rng.gen::<f32>() * (SCALING_BOUND_UPPER_LOG - SCALING_BOUND_LOWER_LOG)
+ SCALING_BOUND_LOWER_LOG;
Vec3::new(
ops::exp2(x_factor_log),
ops::exp2(y_factor_log),
ops::exp2(z_factor_log),
)
}
fn elerp(v1: Vec3, v2: Vec3, t: f32) -> Vec3 {
let x_factor_log = (1. - t) * ops::log2(v1.x) + t * ops::log2(v2.x);
let y_factor_log = (1. - t) * ops::log2(v1.y) + t * ops::log2(v2.y);
let z_factor_log = (1. - t) * ops::log2(v1.z) + t * ops::log2(v2.z);
Vec3::new(
ops::exp2(x_factor_log),
ops::exp2(y_factor_log),
ops::exp2(z_factor_log),
)
}
fn random_rotation(rng: &mut impl Rng) -> Quat {
let dir = random_direction(rng);
let angle = rng.gen::<f32>() * 2. * PI;
Quat::from_axis_angle(dir, angle)
}
fn random_direction(rng: &mut impl Rng) -> Vec3 {
let height = rng.gen::<f32>() * 2. - 1.;
let theta = rng.gen::<f32>() * 2. * PI;
build_direction(height, theta)
}
fn build_direction(height: f32, theta: f32) -> Vec3 {
let z = height;
let m = ops::sin(ops::acos(z));
let x = ops::cos(theta) * m;
let y = ops::sin(theta) * m;
Vec3::new(x, y, z)
}
fn interpolate_transforms(t1: Transform, t2: Transform, t: f32) -> Transform {
let translation = t1.translation.lerp(t2.translation, t);
let rotation = t1.rotation.slerp(t2.rotation, t);
let scale = elerp(t1.scale, t2.scale, t);
Transform {
translation,
rotation,
scale,
}
}