mirror of
https://github.com/bevyengine/bevy
synced 2024-11-10 07:04:33 +00:00
7989cb2650
# Objective - Make `Time` API more consistent. - Support time accel/decel/pause. ## Solution This is just the `Time` half of #3002. I was told that part isn't controversial. - Give the "delta time" and "total elapsed time" methods `f32`, `f64`, and `Duration` variants with consistent naming. - Implement accelerating / decelerating the passage of time. - Implement stopping time. --- ## Changelog - Changed `time_since_startup` to `elapsed` because `time.time_*` is just silly. - Added `relative_speed` and `set_relative_speed` methods. - Added `is_paused`, `pause`, `unpause` , and methods. (I'd prefer `resume`, but `unpause` matches `Timer` API.) - Added `raw_*` variants of the "delta time" and "total elapsed time" methods. - Added `first_update` method because there's a non-zero duration between startup and the first update. ## Migration Guide - `time.time_since_startup()` -> `time.elapsed()` - `time.seconds_since_startup()` -> `time.elapsed_seconds_f64()` - `time.seconds_since_startup_wrapped_f32()` -> `time.elapsed_seconds_wrapped()` If you aren't sure which to use, most systems should continue to use "scaled" time (e.g. `time.delta_seconds()`). The realtime "unscaled" time measurements (e.g. `time.raw_delta_seconds()`) are mostly for debugging and profiling.
72 lines
2.6 KiB
Rust
72 lines
2.6 KiB
Rust
//! Skinned mesh example with mesh and joints data loaded from a glTF file.
|
|
//! Example taken from <https://github.com/KhronosGroup/glTF-Tutorials/blob/master/gltfTutorial/gltfTutorial_019_SimpleSkin.md>
|
|
|
|
use std::f32::consts::*;
|
|
|
|
use bevy::{pbr::AmbientLight, prelude::*, render::mesh::skinning::SkinnedMesh};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.insert_resource(AmbientLight {
|
|
brightness: 1.0,
|
|
..default()
|
|
})
|
|
.add_startup_system(setup)
|
|
.add_system(joint_animation)
|
|
.run();
|
|
}
|
|
|
|
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
|
|
// Create a camera
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(-2.0, 2.5, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
|
|
// Spawn the first scene in `models/SimpleSkin/SimpleSkin.gltf`
|
|
commands.spawn(SceneBundle {
|
|
scene: asset_server.load("models/SimpleSkin/SimpleSkin.gltf#Scene0"),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
/// The scene hierarchy currently looks somewhat like this:
|
|
///
|
|
/// ```ignore
|
|
/// <Parent entity>
|
|
/// + Mesh node (without `PbrBundle` or `SkinnedMesh` component)
|
|
/// + Skinned mesh entity (with `PbrBundle` and `SkinnedMesh` component, created by glTF loader)
|
|
/// + First joint
|
|
/// + Second joint
|
|
/// ```
|
|
///
|
|
/// In this example, we want to get and animate the second joint.
|
|
/// It is similar to the animation defined in `models/SimpleSkin/SimpleSkin.gltf`.
|
|
fn joint_animation(
|
|
time: Res<Time>,
|
|
parent_query: Query<&Parent, With<SkinnedMesh>>,
|
|
children_query: Query<&Children>,
|
|
mut transform_query: Query<&mut Transform>,
|
|
) {
|
|
// Iter skinned mesh entity
|
|
for skinned_mesh_parent in &parent_query {
|
|
// Mesh node is the parent of the skinned mesh entity.
|
|
let mesh_node_entity = skinned_mesh_parent.get();
|
|
// Get `Children` in the mesh node.
|
|
let mesh_node_children = children_query.get(mesh_node_entity).unwrap();
|
|
|
|
// First joint is the second child of the mesh node.
|
|
let first_joint_entity = mesh_node_children[1];
|
|
// Get `Children` in the first joint.
|
|
let first_joint_children = children_query.get(first_joint_entity).unwrap();
|
|
|
|
// Second joint is the first child of the first joint.
|
|
let second_joint_entity = first_joint_children[0];
|
|
// Get `Transform` in the second joint.
|
|
let mut second_joint_transform = transform_query.get_mut(second_joint_entity).unwrap();
|
|
|
|
second_joint_transform.rotation =
|
|
Quat::from_rotation_z(FRAC_PI_2 * time.elapsed_seconds().sin());
|
|
}
|
|
}
|