bevy/crates/bevy_ecs/src/schedule/mod.rs
Mike c2b85f9b52
fix ambiguity reporting (#9648)
# Objective

- I broke ambiguity reporting in one of my refactors.
`conflicts_to_string` should have been using the passed in parameter
rather than the one stored on self.
2023-08-31 19:06:13 +00:00

1049 lines
35 KiB
Rust

//! Contains APIs for ordering systems and executing them on a [`World`](crate::world::World)
mod condition;
mod config;
mod executor;
mod graph_utils;
#[allow(clippy::module_inception)]
mod schedule;
mod set;
mod state;
pub use self::condition::*;
pub use self::config::*;
pub use self::executor::*;
use self::graph_utils::*;
pub use self::schedule::*;
pub use self::set::*;
pub use self::state::*;
pub use self::graph_utils::NodeId;
#[cfg(test)]
mod tests {
use super::*;
use std::sync::atomic::{AtomicU32, Ordering};
pub use crate as bevy_ecs;
pub use crate::schedule::{IntoSystemSetConfig, Schedule, SystemSet};
pub use crate::system::{Res, ResMut};
pub use crate::{prelude::World, system::Resource};
#[derive(SystemSet, Clone, Debug, PartialEq, Eq, Hash)]
enum TestSet {
A,
B,
C,
D,
X,
}
#[derive(Resource, Default)]
struct SystemOrder(Vec<u32>);
#[derive(Resource, Default)]
struct RunConditionBool(pub bool);
#[derive(Resource, Default)]
struct Counter(pub AtomicU32);
fn make_exclusive_system(tag: u32) -> impl FnMut(&mut World) {
move |world| world.resource_mut::<SystemOrder>().0.push(tag)
}
fn make_function_system(tag: u32) -> impl FnMut(ResMut<SystemOrder>) {
move |mut resource: ResMut<SystemOrder>| resource.0.push(tag)
}
fn named_system(mut resource: ResMut<SystemOrder>) {
resource.0.push(u32::MAX);
}
fn named_exclusive_system(world: &mut World) {
world.resource_mut::<SystemOrder>().0.push(u32::MAX);
}
fn counting_system(counter: Res<Counter>) {
counter.0.fetch_add(1, Ordering::Relaxed);
}
mod system_execution {
use super::*;
#[test]
fn run_system() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems(make_function_system(0));
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0]);
}
#[test]
fn run_exclusive_system() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems(make_exclusive_system(0));
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0]);
}
#[test]
#[cfg(not(miri))]
fn parallel_execution() {
use bevy_tasks::{ComputeTaskPool, TaskPool};
use std::sync::{Arc, Barrier};
let mut world = World::default();
let mut schedule = Schedule::default();
let thread_count = ComputeTaskPool::init(TaskPool::default).thread_num();
let barrier = Arc::new(Barrier::new(thread_count));
for _ in 0..thread_count {
let inner = barrier.clone();
schedule.add_systems(move || {
inner.wait();
});
}
schedule.run(&mut world);
}
}
mod system_ordering {
use super::*;
#[test]
fn order_systems() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems((
named_system,
make_function_system(1).before(named_system),
make_function_system(0)
.after(named_system)
.in_set(TestSet::A),
));
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![1, u32::MAX, 0]);
world.insert_resource(SystemOrder::default());
assert_eq!(world.resource::<SystemOrder>().0, vec![]);
// modify the schedule after it's been initialized and test ordering with sets
schedule.configure_set(TestSet::A.after(named_system));
schedule.add_systems((
make_function_system(3)
.before(TestSet::A)
.after(named_system),
make_function_system(4).after(TestSet::A),
));
schedule.run(&mut world);
assert_eq!(
world.resource::<SystemOrder>().0,
vec![1, u32::MAX, 3, 0, 4]
);
}
#[test]
fn order_exclusive_systems() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems((
named_exclusive_system,
make_exclusive_system(1).before(named_exclusive_system),
make_exclusive_system(0).after(named_exclusive_system),
));
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![1, u32::MAX, 0]);
}
#[test]
fn add_systems_correct_order() {
let mut world = World::new();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems(
(
make_function_system(0),
make_function_system(1),
make_exclusive_system(2),
make_function_system(3),
)
.chain(),
);
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0, 1, 2, 3]);
}
#[test]
fn add_systems_correct_order_nested() {
let mut world = World::new();
let mut schedule = Schedule::default();
world.init_resource::<SystemOrder>();
schedule.add_systems(
(
(make_function_system(0), make_function_system(1)).chain(),
make_function_system(2),
(make_function_system(3), make_function_system(4)).chain(),
(
make_function_system(5),
(make_function_system(6), make_function_system(7)),
),
(
(make_function_system(8), make_function_system(9)).chain(),
make_function_system(10),
),
)
.chain(),
);
schedule.run(&mut world);
let order = &world.resource::<SystemOrder>().0;
assert_eq!(
&order[0..5],
&[0, 1, 2, 3, 4],
"first five items should be exactly ordered"
);
let unordered = &order[5..8];
assert!(
unordered.contains(&5) && unordered.contains(&6) && unordered.contains(&7),
"unordered must be 5, 6, and 7 in any order"
);
let partially_ordered = &order[8..11];
assert!(
partially_ordered == [8, 9, 10] || partially_ordered == [10, 8, 9],
"partially_ordered must be [8, 9, 10] or [10, 8, 9]"
);
assert!(order.len() == 11, "must have exactly 11 order entries");
}
}
mod conditions {
use crate::change_detection::DetectChanges;
use super::*;
#[test]
fn system_with_condition() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<RunConditionBool>();
world.init_resource::<SystemOrder>();
schedule.add_systems(
make_function_system(0).run_if(|condition: Res<RunConditionBool>| condition.0),
);
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![]);
world.resource_mut::<RunConditionBool>().0 = true;
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0]);
}
#[test]
fn systems_with_distributive_condition() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.insert_resource(RunConditionBool(true));
world.init_resource::<SystemOrder>();
fn change_condition(mut condition: ResMut<RunConditionBool>) {
condition.0 = false;
}
schedule.add_systems(
(
make_function_system(0),
change_condition,
make_function_system(1),
)
.chain()
.distributive_run_if(|condition: Res<RunConditionBool>| condition.0),
);
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0]);
}
#[test]
fn run_exclusive_system_with_condition() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<RunConditionBool>();
world.init_resource::<SystemOrder>();
schedule.add_systems(
make_exclusive_system(0).run_if(|condition: Res<RunConditionBool>| condition.0),
);
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![]);
world.resource_mut::<RunConditionBool>().0 = true;
schedule.run(&mut world);
assert_eq!(world.resource::<SystemOrder>().0, vec![0]);
}
#[test]
fn multiple_conditions_on_system() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<Counter>();
schedule.add_systems((
counting_system.run_if(|| false).run_if(|| false),
counting_system.run_if(|| true).run_if(|| false),
counting_system.run_if(|| false).run_if(|| true),
counting_system.run_if(|| true).run_if(|| true),
));
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
}
#[test]
fn multiple_conditions_on_system_sets() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<Counter>();
schedule.configure_set(TestSet::A.run_if(|| false).run_if(|| false));
schedule.add_systems(counting_system.in_set(TestSet::A));
schedule.configure_set(TestSet::B.run_if(|| true).run_if(|| false));
schedule.add_systems(counting_system.in_set(TestSet::B));
schedule.configure_set(TestSet::C.run_if(|| false).run_if(|| true));
schedule.add_systems(counting_system.in_set(TestSet::C));
schedule.configure_set(TestSet::D.run_if(|| true).run_if(|| true));
schedule.add_systems(counting_system.in_set(TestSet::D));
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
}
#[test]
fn systems_nested_in_system_sets() {
let mut world = World::default();
let mut schedule = Schedule::default();
world.init_resource::<Counter>();
schedule.configure_set(TestSet::A.run_if(|| false));
schedule.add_systems(counting_system.in_set(TestSet::A).run_if(|| false));
schedule.configure_set(TestSet::B.run_if(|| true));
schedule.add_systems(counting_system.in_set(TestSet::B).run_if(|| false));
schedule.configure_set(TestSet::C.run_if(|| false));
schedule.add_systems(counting_system.in_set(TestSet::C).run_if(|| true));
schedule.configure_set(TestSet::D.run_if(|| true));
schedule.add_systems(counting_system.in_set(TestSet::D).run_if(|| true));
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
}
#[test]
fn system_conditions_and_change_detection() {
#[derive(Resource, Default)]
struct Bool2(pub bool);
let mut world = World::default();
world.init_resource::<Counter>();
world.init_resource::<RunConditionBool>();
world.init_resource::<Bool2>();
let mut schedule = Schedule::default();
schedule.add_systems(
counting_system
.run_if(|res1: Res<RunConditionBool>| res1.is_changed())
.run_if(|res2: Res<Bool2>| res2.is_changed()),
);
// both resource were just added.
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// nothing has changed
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// RunConditionBool has changed, but counting_system did not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// internal state for the bool2 run criteria was updated in the
// previous run, so system still does not run
world.get_resource_mut::<Bool2>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// internal state for bool2 was updated, so system still does not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// now check that it works correctly changing Bool2 first and then RunConditionBool
world.get_resource_mut::<Bool2>().unwrap().0 = false;
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 2);
}
#[test]
fn system_set_conditions_and_change_detection() {
#[derive(Resource, Default)]
struct Bool2(pub bool);
let mut world = World::default();
world.init_resource::<Counter>();
world.init_resource::<RunConditionBool>();
world.init_resource::<Bool2>();
let mut schedule = Schedule::default();
schedule.configure_set(
TestSet::A
.run_if(|res1: Res<RunConditionBool>| res1.is_changed())
.run_if(|res2: Res<Bool2>| res2.is_changed()),
);
schedule.add_systems(counting_system.in_set(TestSet::A));
// both resource were just added.
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// nothing has changed
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// RunConditionBool has changed, but counting_system did not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// internal state for the bool2 run criteria was updated in the
// previous run, so system still does not run
world.get_resource_mut::<Bool2>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// internal state for bool2 was updated, so system still does not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// the system only runs when both are changed on the same run
world.get_resource_mut::<Bool2>().unwrap().0 = false;
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 2);
}
#[test]
fn mixed_conditions_and_change_detection() {
#[derive(Resource, Default)]
struct Bool2(pub bool);
let mut world = World::default();
world.init_resource::<Counter>();
world.init_resource::<RunConditionBool>();
world.init_resource::<Bool2>();
let mut schedule = Schedule::default();
schedule
.configure_set(TestSet::A.run_if(|res1: Res<RunConditionBool>| res1.is_changed()));
schedule.add_systems(
counting_system
.run_if(|res2: Res<Bool2>| res2.is_changed())
.in_set(TestSet::A),
);
// both resource were just added.
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// nothing has changed
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// RunConditionBool has changed, but counting_system did not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// we now only change bool2 and the system also should not run
world.get_resource_mut::<Bool2>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// internal state for the bool2 run criteria was updated in the
// previous run, so system still does not run
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 1);
// the system only runs when both are changed on the same run
world.get_resource_mut::<Bool2>().unwrap().0 = false;
world.get_resource_mut::<RunConditionBool>().unwrap().0 = false;
schedule.run(&mut world);
assert_eq!(world.resource::<Counter>().0.load(Ordering::Relaxed), 2);
}
}
mod schedule_build_errors {
use super::*;
#[test]
#[should_panic]
fn dependency_loop() {
let mut schedule = Schedule::default();
schedule.configure_set(TestSet::X.after(TestSet::X));
}
#[test]
fn dependency_cycle() {
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.configure_set(TestSet::A.after(TestSet::B));
schedule.configure_set(TestSet::B.after(TestSet::A));
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::DependencyCycle(_))
));
fn foo() {}
fn bar() {}
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.add_systems((foo.after(bar), bar.after(foo)));
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::DependencyCycle(_))
));
}
#[test]
#[should_panic]
fn hierarchy_loop() {
let mut schedule = Schedule::default();
schedule.configure_set(TestSet::X.in_set(TestSet::X));
}
#[test]
fn hierarchy_cycle() {
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.configure_set(TestSet::A.in_set(TestSet::B));
schedule.configure_set(TestSet::B.in_set(TestSet::A));
let result = schedule.initialize(&mut world);
assert!(matches!(result, Err(ScheduleBuildError::HierarchyCycle(_))));
}
#[test]
fn system_type_set_ambiguity() {
// Define some systems.
fn foo() {}
fn bar() {}
let mut world = World::new();
let mut schedule = Schedule::default();
// Schedule `bar` to run after `foo`.
schedule.add_systems((foo, bar.after(foo)));
// There's only one `foo`, so it's fine.
let result = schedule.initialize(&mut world);
assert!(result.is_ok());
// Schedule another `foo`.
schedule.add_systems(foo);
// When there are multiple instances of `foo`, dependencies on
// `foo` are no longer allowed. Too much ambiguity.
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::SystemTypeSetAmbiguity(_))
));
// same goes for `ambiguous_with`
let mut schedule = Schedule::default();
schedule.add_systems(foo);
schedule.add_systems(bar.ambiguous_with(foo));
let result = schedule.initialize(&mut world);
assert!(result.is_ok());
schedule.add_systems(foo);
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::SystemTypeSetAmbiguity(_))
));
}
#[test]
#[should_panic]
fn configure_system_type_set() {
fn foo() {}
let mut schedule = Schedule::default();
schedule.configure_set(foo.into_system_set());
}
#[test]
fn hierarchy_redundancy() {
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.set_build_settings(ScheduleBuildSettings {
hierarchy_detection: LogLevel::Error,
..Default::default()
});
// Add `A`.
schedule.configure_set(TestSet::A);
// Add `B` as child of `A`.
schedule.configure_set(TestSet::B.in_set(TestSet::A));
// Add `X` as child of both `A` and `B`.
schedule.configure_set(TestSet::X.in_set(TestSet::A).in_set(TestSet::B));
// `X` cannot be the `A`'s child and grandchild at the same time.
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::HierarchyRedundancy(_))
));
}
#[test]
fn cross_dependency() {
let mut world = World::new();
let mut schedule = Schedule::default();
// Add `B` and give it both kinds of relationships with `A`.
schedule.configure_set(TestSet::B.in_set(TestSet::A));
schedule.configure_set(TestSet::B.after(TestSet::A));
let result = schedule.initialize(&mut world);
assert!(matches!(
result,
Err(ScheduleBuildError::CrossDependency(_, _))
));
}
#[test]
fn sets_have_order_but_intersect() {
let mut world = World::new();
let mut schedule = Schedule::default();
fn foo() {}
// Add `foo` to both `A` and `C`.
schedule.add_systems(foo.in_set(TestSet::A).in_set(TestSet::C));
// Order `A -> B -> C`.
schedule.configure_sets((
TestSet::A,
TestSet::B.after(TestSet::A),
TestSet::C.after(TestSet::B),
));
let result = schedule.initialize(&mut world);
// `foo` can't be in both `A` and `C` because they can't run at the same time.
assert!(matches!(
result,
Err(ScheduleBuildError::SetsHaveOrderButIntersect(_, _))
));
}
#[test]
fn ambiguity() {
#[derive(Resource)]
struct X;
fn res_ref(_x: Res<X>) {}
fn res_mut(_x: ResMut<X>) {}
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.set_build_settings(ScheduleBuildSettings {
ambiguity_detection: LogLevel::Error,
..Default::default()
});
schedule.add_systems((res_ref, res_mut));
let result = schedule.initialize(&mut world);
assert!(matches!(result, Err(ScheduleBuildError::Ambiguity(_))));
}
}
mod system_ambiguity {
// Required to make the derive macro behave
use crate as bevy_ecs;
use crate::event::Events;
use crate::prelude::*;
#[derive(Resource)]
struct R;
#[derive(Component)]
struct A;
#[derive(Component)]
struct B;
// An event type
#[derive(Event)]
struct E;
fn empty_system() {}
fn res_system(_res: Res<R>) {}
fn resmut_system(_res: ResMut<R>) {}
fn nonsend_system(_ns: NonSend<R>) {}
fn nonsendmut_system(_ns: NonSendMut<R>) {}
fn read_component_system(_query: Query<&A>) {}
fn write_component_system(_query: Query<&mut A>) {}
fn with_filtered_component_system(_query: Query<&mut A, With<B>>) {}
fn without_filtered_component_system(_query: Query<&mut A, Without<B>>) {}
fn event_reader_system(_reader: EventReader<E>) {}
fn event_writer_system(_writer: EventWriter<E>) {}
fn event_resource_system(_events: ResMut<Events<E>>) {}
fn read_world_system(_world: &World) {}
fn write_world_system(_world: &mut World) {}
// Tests for conflict detection
#[test]
fn one_of_everything() {
let mut world = World::new();
world.insert_resource(R);
world.spawn(A);
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule
// nonsendmut system deliberately conflicts with resmut system
.add_systems((resmut_system, write_component_system, event_writer_system));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn read_only() {
let mut world = World::new();
world.insert_resource(R);
world.spawn(A);
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule.add_systems((
empty_system,
empty_system,
res_system,
res_system,
nonsend_system,
nonsend_system,
read_component_system,
read_component_system,
event_reader_system,
event_reader_system,
read_world_system,
read_world_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn read_world() {
let mut world = World::new();
world.insert_resource(R);
world.spawn(A);
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule.add_systems((
resmut_system,
write_component_system,
event_writer_system,
read_world_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 3);
}
#[test]
fn resources() {
let mut world = World::new();
world.insert_resource(R);
let mut schedule = Schedule::default();
schedule.add_systems((resmut_system, res_system));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 1);
}
#[test]
fn nonsend() {
let mut world = World::new();
world.insert_resource(R);
let mut schedule = Schedule::default();
schedule.add_systems((nonsendmut_system, nonsend_system));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 1);
}
#[test]
fn components() {
let mut world = World::new();
world.spawn(A);
let mut schedule = Schedule::default();
schedule.add_systems((read_component_system, write_component_system));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 1);
}
#[test]
#[ignore = "Known failing but fix is non-trivial: https://github.com/bevyengine/bevy/issues/4381"]
fn filtered_components() {
let mut world = World::new();
world.spawn(A);
let mut schedule = Schedule::default();
schedule.add_systems((
with_filtered_component_system,
without_filtered_component_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn events() {
let mut world = World::new();
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule.add_systems((
// All of these systems clash
event_reader_system,
event_writer_system,
event_resource_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 3);
}
#[test]
fn exclusive() {
let mut world = World::new();
world.insert_resource(R);
world.spawn(A);
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule.add_systems((
// All 3 of these conflict with each other
write_world_system,
write_world_system,
res_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 3);
}
// Tests for silencing and resolving ambiguities
#[test]
fn before_and_after() {
let mut world = World::new();
world.init_resource::<Events<E>>();
let mut schedule = Schedule::default();
schedule.add_systems((
event_reader_system.before(event_writer_system),
event_writer_system,
event_resource_system.after(event_writer_system),
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn ignore_all_ambiguities() {
let mut world = World::new();
world.insert_resource(R);
let mut schedule = Schedule::default();
schedule.add_systems((
resmut_system.ambiguous_with_all(),
res_system,
nonsend_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn ambiguous_with_label() {
let mut world = World::new();
world.insert_resource(R);
#[derive(SystemSet, Hash, PartialEq, Eq, Debug, Clone)]
struct IgnoreMe;
let mut schedule = Schedule::default();
schedule.add_systems((
resmut_system.ambiguous_with(IgnoreMe),
res_system.in_set(IgnoreMe),
nonsend_system.in_set(IgnoreMe),
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
#[test]
fn ambiguous_with_system() {
let mut world = World::new();
let mut schedule = Schedule::default();
schedule.add_systems((
write_component_system.ambiguous_with(read_component_system),
read_component_system,
));
let _ = schedule.initialize(&mut world);
assert_eq!(schedule.graph().conflicting_systems().len(), 0);
}
// Tests that the correct ambiguities were reported in the correct order.
#[test]
fn correct_ambiguities() {
use super::*;
#[derive(ScheduleLabel, Hash, PartialEq, Eq, Debug, Clone)]
struct TestSchedule;
fn system_a(_res: ResMut<R>) {}
fn system_b(_res: ResMut<R>) {}
fn system_c(_res: ResMut<R>) {}
fn system_d(_res: ResMut<R>) {}
fn system_e(_res: ResMut<R>) {}
let mut world = World::new();
world.insert_resource(R);
let mut schedule = Schedule::new(TestSchedule);
schedule.add_systems((
system_a,
system_b,
system_c.ambiguous_with_all(),
system_d.ambiguous_with(system_b),
system_e.after(system_a),
));
schedule.graph_mut().initialize(&mut world);
let _ = schedule
.graph_mut()
.build_schedule(world.components(), &TestSchedule.dyn_clone());
let ambiguities: Vec<_> = schedule
.graph()
.conflicts_to_string(schedule.graph().conflicting_systems(), world.components())
.collect();
let expected = &[
(
"system_d".to_string(),
"system_a".to_string(),
vec!["bevy_ecs::schedule::tests::system_ambiguity::R"],
),
(
"system_d".to_string(),
"system_e".to_string(),
vec!["bevy_ecs::schedule::tests::system_ambiguity::R"],
),
(
"system_b".to_string(),
"system_a".to_string(),
vec!["bevy_ecs::schedule::tests::system_ambiguity::R"],
),
(
"system_b".to_string(),
"system_e".to_string(),
vec!["bevy_ecs::schedule::tests::system_ambiguity::R"],
),
];
// ordering isn't stable so do this
for entry in expected {
assert!(ambiguities.contains(entry));
}
}
}
}