mirror of
https://github.com/bevyengine/bevy
synced 2024-11-22 12:43:34 +00:00
2ea51fc60f
# Objective Fix #10284. ## Solution When `DynamicSceneBuilder` extracts entities, they are cloned via `PartialReflect::clone_value`, making them into dynamic versions of the original components. This loses any custom `ReflectSerialize` type data. Dynamic scenes are deserialized with the original types, not the dynamic versions, and so any component with a custom serialize may fail. In this case `Rect` and `Vec2`. The dynamic version includes the field names 'x' and 'y' but the `Serialize` impl doesn't, hence the "expect float" error. The solution here: Instead of using `clone_value` to clone the components, `FromReflect` clones and retains the original information needed to serialize with any custom `Serialize` impls. I think using something like `reflect_clone` from (https://github.com/bevyengine/bevy/pull/13432) might make this more efficient. I also did the same when deserializing dynamic scenes to appease some of the round-trip tests which use `ReflectPartialEq`, which requires the types be the same and not a unique/proxy pair. I'm not sure it's otherwise necessary. Maybe this would also be more efficient when spawning dynamic scenes with `reflect_clone` instead of `FromReflect` again? An alternative solution would be to fall back to the dynamic version when deserializing `DynamicScene`s if the custom version fails. I think that's possible. Or maybe simply always deserializing via the dynamic route for dynamic scenes? ## Testing This example is similar to the original test case in #10284: ``` rust #![allow(missing_docs)] use bevy::{prelude::*, scene::SceneInstanceReady}; fn main() { App::new() .add_plugins(DefaultPlugins) .add_systems(Startup, (save, load).chain()) .observe(check) .run(); } static SAVEGAME_SAVE_PATH: &str = "savegame.scn.ron"; fn save(world: &mut World) { let entity = world.spawn(OrthographicProjection::default()).id(); let scene = DynamicSceneBuilder::from_world(world) .extract_entity(entity) .build(); if let Some(registry) = world.get_resource::<AppTypeRegistry>() { let registry = registry.read(); let serialized_scene = scene.serialize(®istry).unwrap(); // println!("{}", serialized_scene); std::fs::write(format!("assets/{SAVEGAME_SAVE_PATH}"), serialized_scene).unwrap(); } world.entity_mut(entity).despawn_recursive(); } fn load(mut commands: Commands, asset_server: Res<AssetServer>) { commands.spawn(DynamicSceneBundle { scene: asset_server.load(SAVEGAME_SAVE_PATH), ..default() }); } fn check(_trigger: Trigger<SceneInstanceReady>, query: Query<&OrthographicProjection>) { dbg!(query.single()); } ``` ## Migration Guide The `DynamicScene` format is changed to use custom serialize impls so old scene files will need updating: Old: ```ron ( resources: {}, entities: { 4294967299: ( components: { "bevy_render:📷:projection::OrthographicProjection": ( near: 0.0, far: 1000.0, viewport_origin: ( x: 0.5, y: 0.5, ), scaling_mode: WindowSize(1.0), scale: 1.0, area: ( min: ( x: -1.0, y: -1.0, ), max: ( x: 1.0, y: 1.0, ), ), ), }, ), }, ) ``` New: ```ron ( resources: {}, entities: { 4294967299: ( components: { "bevy_render:📷:projection::OrthographicProjection": ( near: 0.0, far: 1000.0, viewport_origin: (0.5, 0.5), scaling_mode: WindowSize(1.0), scale: 1.0, area: ( min: (-1.0, -1.0), max: (1.0, 1.0), ), ), }, ), }, ) ``` --------- Co-authored-by: Gino Valente <49806985+MrGVSV@users.noreply.github.com> |
||
---|---|---|
.. | ||
compile_fail | ||
derive | ||
examples | ||
src | ||
Cargo.toml | ||
README.md |
Bevy Reflect
This crate enables you to dynamically interact with Rust types:
- Derive the
Reflect
traits - Interact with fields using their names (for named structs) or indices (for tuple structs)
- "Patch" your types with new values
- Look up nested fields using "path strings"
- Iterate over struct fields
- Automatically serialize and deserialize via Serde (without explicit serde impls)
- Trait "reflection"
Features
Derive the Reflect
traits
// this will automatically implement the `Reflect` trait and the `Struct` trait (because the type is a struct)
#[derive(Reflect)]
struct Foo {
a: u32,
b: Bar,
c: Vec<i32>,
d: Vec<Baz>,
}
// this will automatically implement the `Reflect` trait and the `TupleStruct` trait (because the type is a tuple struct)
#[derive(Reflect)]
struct Bar(String);
#[derive(Reflect)]
struct Baz {
value: f32,
}
// We will use this value to illustrate `bevy_reflect` features
let mut foo = Foo {
a: 1,
b: Bar("hello".to_string()),
c: vec![1, 2],
d: vec![Baz { value: 3.14 }],
};
Interact with fields using their names
assert_eq!(*foo.get_field::<u32>("a").unwrap(), 1);
*foo.get_field_mut::<u32>("a").unwrap() = 2;
assert_eq!(foo.a, 2);
"Patch" your types with new values
let mut dynamic_struct = DynamicStruct::default();
dynamic_struct.insert("a", 42u32);
dynamic_struct.insert("c", vec![3, 4, 5]);
foo.apply(&dynamic_struct);
assert_eq!(foo.a, 42);
assert_eq!(foo.c, vec![3, 4, 5]);
Look up nested fields using "path strings"
let value = *foo.get_path::<f32>("d[0].value").unwrap();
assert_eq!(value, 3.14);
Iterate over struct fields
for (i, value: &Reflect) in foo.iter_fields().enumerate() {
let field_name = foo.name_at(i).unwrap();
if let Some(value) = value.downcast_ref::<u32>() {
println!("{} is a u32 with the value: {}", field_name, *value);
}
}
Automatically serialize and deserialize via Serde (without explicit serde impls)
let mut registry = TypeRegistry::default();
registry.register::<u32>();
registry.register::<i32>();
registry.register::<f32>();
registry.register::<String>();
registry.register::<Bar>();
registry.register::<Baz>();
let serializer = ReflectSerializer::new(&foo, ®istry);
let serialized = ron::ser::to_string_pretty(&serializer, ron::ser::PrettyConfig::default()).unwrap();
let mut deserializer = ron::de::Deserializer::from_str(&serialized).unwrap();
let reflect_deserializer = ReflectDeserializer::new(®istry);
let value = reflect_deserializer.deserialize(&mut deserializer).unwrap();
let dynamic_struct = value.take::<DynamicStruct>().unwrap();
assert!(foo.reflect_partial_eq(&dynamic_struct).unwrap());
Trait "reflection"
Call a trait on a given &dyn Reflect
reference without knowing the underlying type!
#[derive(Reflect)]
#[reflect(DoThing)]
struct MyType {
value: String,
}
impl DoThing for MyType {
fn do_thing(&self) -> String {
format!("{} World!", self.value)
}
}
#[reflect_trait]
pub trait DoThing {
fn do_thing(&self) -> String;
}
// First, lets box our type as a Box<dyn Reflect>
let reflect_value: Box<dyn Reflect> = Box::new(MyType {
value: "Hello".to_string(),
});
// This means we no longer have direct access to MyType or its methods. We can only call Reflect methods on reflect_value.
// What if we want to call `do_thing` on our type? We could downcast using reflect_value.downcast_ref::<MyType>(), but what if we
// don't know the type at compile time?
// Normally in rust we would be out of luck at this point. Lets use our new reflection powers to do something cool!
let mut type_registry = TypeRegistry::default();
type_registry.register::<MyType>();
// The #[reflect] attribute we put on our DoThing trait generated a new `ReflectDoThing` struct, which implements TypeData.
// This was added to MyType's TypeRegistration.
let reflect_do_thing = type_registry
.get_type_data::<ReflectDoThing>(reflect_value.type_id())
.unwrap();
// We can use this generated type to convert our `&dyn Reflect` reference to a `&dyn DoThing` reference
let my_trait: &dyn DoThing = reflect_do_thing.get(&*reflect_value).unwrap();
// Which means we can now call do_thing(). Magic!
println!("{}", my_trait.do_thing());
// This works because the #[reflect(MyTrait)] we put on MyType informed the Reflect derive to insert a new instance
// of ReflectDoThing into MyType's registration. The instance knows how to cast &dyn Reflect to &dyn DoThing, because it
// knows that &dyn Reflect should first be downcasted to &MyType, which can then be safely casted to &dyn DoThing
Why make this?
The whole point of Rust is static safety! Why build something that makes it easy to throw it all away?
- Some problems are inherently dynamic (scripting, some types of serialization / deserialization)
- Sometimes the dynamic way is easier
- Sometimes the dynamic way puts less burden on your users to derive a bunch of traits (this was a big motivator for the Bevy project)