bevy/crates/bevy_pbr/src/material.rs

1005 lines
38 KiB
Rust

#[cfg(feature = "meshlet")]
use crate::meshlet::{
prepare_material_meshlet_meshes_main_opaque_pass, queue_material_meshlet_meshes,
InstanceManager,
};
use crate::*;
use bevy_asset::{Asset, AssetId, AssetServer};
use bevy_core_pipeline::{
core_3d::{
AlphaMask3d, Camera3d, Opaque3d, Opaque3dBinKey, ScreenSpaceTransmissionQuality,
Transmissive3d, Transparent3d,
},
prepass::{
DeferredPrepass, DepthPrepass, MotionVectorPrepass, NormalPrepass, OpaqueNoLightmap3dBinKey,
},
tonemapping::{DebandDither, Tonemapping},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
prelude::*,
system::{lifetimeless::SRes, SystemParamItem},
};
use bevy_reflect::std_traits::ReflectDefault;
use bevy_reflect::Reflect;
use bevy_render::{
camera::TemporalJitter,
extract_instances::{ExtractInstancesPlugin, ExtractedInstances},
extract_resource::ExtractResource,
mesh::{MeshVertexBufferLayoutRef, RenderMesh},
render_asset::{PrepareAssetError, RenderAsset, RenderAssetPlugin, RenderAssets},
render_phase::*,
render_resource::*,
renderer::RenderDevice,
view::{ExtractedView, Msaa, RenderVisibilityRanges, VisibleEntities, WithMesh},
};
use bevy_utils::tracing::error;
use std::marker::PhantomData;
use std::sync::atomic::{AtomicU32, Ordering};
use std::{hash::Hash, num::NonZero};
use self::{irradiance_volume::IrradianceVolume, prelude::EnvironmentMapLight};
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`]
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh`](bevy_render::mesh::Mesh) entities with custom shader logic.
///
/// Materials must implement [`AsBindGroup`] to define how data will be transferred to the GPU and bound in shaders.
/// [`AsBindGroup`] can be derived, which makes generating bindings straightforward. See the [`AsBindGroup`] docs for details.
///
/// # Example
///
/// Here is a simple Material implementation. The [`AsBindGroup`] derive has many features. To see what else is available,
/// check out the [`AsBindGroup`] documentation.
/// ```
/// # use bevy_pbr::{Material, MaterialMeshBundle};
/// # use bevy_ecs::prelude::*;
/// # use bevy_reflect::TypePath;
/// # use bevy_render::{render_resource::{AsBindGroup, ShaderRef}, texture::Image};
/// # use bevy_color::LinearRgba;
/// # use bevy_color::palettes::basic::RED;
/// # use bevy_asset::{Handle, AssetServer, Assets, Asset};
///
/// #[derive(AsBindGroup, Debug, Clone, Asset, TypePath)]
/// pub struct CustomMaterial {
/// // Uniform bindings must implement `ShaderType`, which will be used to convert the value to
/// // its shader-compatible equivalent. Most core math types already implement `ShaderType`.
/// #[uniform(0)]
/// color: LinearRgba,
/// // Images can be bound as textures in shaders. If the Image's sampler is also needed, just
/// // add the sampler attribute with a different binding index.
/// #[texture(1)]
/// #[sampler(2)]
/// color_texture: Handle<Image>,
/// }
///
/// // All functions on `Material` have default impls. You only need to implement the
/// // functions that are relevant for your material.
/// impl Material for CustomMaterial {
/// fn fragment_shader() -> ShaderRef {
/// "shaders/custom_material.wgsl".into()
/// }
/// }
///
/// // Spawn an entity using `CustomMaterial`.
/// fn setup(mut commands: Commands, mut materials: ResMut<Assets<CustomMaterial>>, asset_server: Res<AssetServer>) {
/// commands.spawn(MaterialMeshBundle {
/// material: materials.add(CustomMaterial {
/// color: RED.into(),
/// color_texture: asset_server.load("some_image.png"),
/// }),
/// ..Default::default()
/// });
/// }
/// ```
/// In WGSL shaders, the material's binding would look like this:
///
/// ```wgsl
/// @group(2) @binding(0) var<uniform> color: vec4<f32>;
/// @group(2) @binding(1) var color_texture: texture_2d<f32>;
/// @group(2) @binding(2) var color_sampler: sampler;
/// ```
pub trait Material: Asset + AsBindGroup + Clone + Sized {
/// Returns this material's vertex shader. If [`ShaderRef::Default`] is returned, the default mesh vertex shader
/// will be used.
fn vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's fragment shader. If [`ShaderRef::Default`] is returned, the default mesh fragment shader
/// will be used.
#[allow(unused_variables)]
fn fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[inline]
fn alpha_mode(&self) -> AlphaMode {
AlphaMode::Opaque
}
/// Returns if this material should be rendered by the deferred or forward renderer.
/// for `AlphaMode::Opaque` or `AlphaMode::Mask` materials.
/// If `OpaqueRendererMethod::Auto`, it will default to what is selected in the `DefaultOpaqueRendererMethod` resource.
#[inline]
fn opaque_render_method(&self) -> OpaqueRendererMethod {
OpaqueRendererMethod::Forward
}
#[inline]
/// Add a bias to the view depth of the mesh which can be used to force a specific render order.
/// for meshes with similar depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
fn depth_bias(&self) -> f32 {
0.0
}
#[inline]
/// Returns whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
fn reads_view_transmission_texture(&self) -> bool {
false
}
/// Returns this material's prepass vertex shader. If [`ShaderRef::Default`] is returned, the default prepass vertex shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
fn prepass_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's prepass fragment shader. If [`ShaderRef::Default`] is returned, the default prepass fragment shader
/// will be used.
///
/// This is used for the various [prepasses](bevy_core_pipeline::prepass) as well as for generating the depth maps
/// required for shadow mapping.
#[allow(unused_variables)]
fn prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred vertex shader. If [`ShaderRef::Default`] is returned, the default deferred vertex shader
/// will be used.
fn deferred_vertex_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's deferred fragment shader. If [`ShaderRef::Default`] is returned, the default deferred fragment shader
/// will be used.
#[allow(unused_variables)]
fn deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] prepass fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh prepass fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_prepass_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Returns this material's [`crate::meshlet::MeshletMesh`] deferred fragment shader. If [`ShaderRef::Default`] is returned,
/// the default meshlet mesh deferred fragment shader will be used.
///
/// This is part of an experimental feature, and is unnecessary to implement unless you are using `MeshletMesh`'s.
#[allow(unused_variables)]
#[cfg(feature = "meshlet")]
fn meshlet_mesh_deferred_fragment_shader() -> ShaderRef {
ShaderRef::Default
}
/// Customizes the default [`RenderPipelineDescriptor`] for a specific entity using the entity's
/// [`MaterialPipelineKey`] and [`MeshVertexBufferLayoutRef`] as input.
#[allow(unused_variables)]
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayoutRef,
key: MaterialPipelineKey<Self>,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`Material`]
/// asset type.
pub struct MaterialPlugin<M: Material> {
/// Controls if the prepass is enabled for the Material.
/// For more information about what a prepass is, see the [`bevy_core_pipeline::prepass`] docs.
///
/// When it is enabled, it will automatically add the [`PrepassPlugin`]
/// required to make the prepass work on this Material.
pub prepass_enabled: bool,
/// Controls if shadows are enabled for the Material.
pub shadows_enabled: bool,
pub _marker: PhantomData<M>,
}
impl<M: Material> Default for MaterialPlugin<M> {
fn default() -> Self {
Self {
prepass_enabled: true,
shadows_enabled: true,
_marker: Default::default(),
}
}
}
impl<M: Material> Plugin for MaterialPlugin<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
fn build(&self, app: &mut App) {
app.init_asset::<M>().add_plugins((
ExtractInstancesPlugin::<AssetId<M>>::extract_visible(),
RenderAssetPlugin::<PreparedMaterial<M>>::default(),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<DrawFunctions<Shadow>>()
.add_render_command::<Shadow, DrawPrepass<M>>()
.add_render_command::<Transmissive3d, DrawMaterial<M>>()
.add_render_command::<Transparent3d, DrawMaterial<M>>()
.add_render_command::<Opaque3d, DrawMaterial<M>>()
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
.add_systems(
Render,
queue_material_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
);
if self.shadows_enabled {
render_app.add_systems(
Render,
queue_shadows::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>),
);
}
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
queue_material_meshlet_meshes::<M>
.in_set(RenderSet::QueueMeshes)
.run_if(resource_exists::<InstanceManager>),
);
#[cfg(feature = "meshlet")]
render_app.add_systems(
Render,
prepare_material_meshlet_meshes_main_opaque_pass::<M>
.in_set(RenderSet::QueueMeshes)
.after(prepare_assets::<PreparedMaterial<M>>)
.before(queue_material_meshlet_meshes::<M>)
.run_if(resource_exists::<InstanceManager>),
);
}
if self.shadows_enabled || self.prepass_enabled {
// PrepassPipelinePlugin is required for shadow mapping and the optional PrepassPlugin
app.add_plugins(PrepassPipelinePlugin::<M>::default());
}
if self.prepass_enabled {
app.add_plugins(PrepassPlugin::<M>::default());
}
}
fn finish(&self, app: &mut App) {
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<MaterialPipeline<M>>();
}
}
}
/// A key uniquely identifying a specialized [`MaterialPipeline`].
pub struct MaterialPipelineKey<M: Material> {
pub mesh_key: MeshPipelineKey,
pub bind_group_data: M::Data,
}
impl<M: Material> Eq for MaterialPipelineKey<M> where M::Data: PartialEq {}
impl<M: Material> PartialEq for MaterialPipelineKey<M>
where
M::Data: PartialEq,
{
fn eq(&self, other: &Self) -> bool {
self.mesh_key == other.mesh_key && self.bind_group_data == other.bind_group_data
}
}
impl<M: Material> Clone for MaterialPipelineKey<M>
where
M::Data: Clone,
{
fn clone(&self) -> Self {
Self {
mesh_key: self.mesh_key,
bind_group_data: self.bind_group_data.clone(),
}
}
}
impl<M: Material> Hash for MaterialPipelineKey<M>
where
M::Data: Hash,
{
fn hash<H: std::hash::Hasher>(&self, state: &mut H) {
self.mesh_key.hash(state);
self.bind_group_data.hash(state);
}
}
/// Render pipeline data for a given [`Material`].
#[derive(Resource)]
pub struct MaterialPipeline<M: Material> {
pub mesh_pipeline: MeshPipeline,
pub material_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
pub marker: PhantomData<M>,
}
impl<M: Material> Clone for MaterialPipeline<M> {
fn clone(&self) -> Self {
Self {
mesh_pipeline: self.mesh_pipeline.clone(),
material_layout: self.material_layout.clone(),
vertex_shader: self.vertex_shader.clone(),
fragment_shader: self.fragment_shader.clone(),
marker: PhantomData,
}
}
}
impl<M: Material> SpecializedMeshPipeline for MaterialPipeline<M>
where
M::Data: PartialEq + Eq + Hash + Clone,
{
type Key = MaterialPipelineKey<M>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
descriptor.layout.insert(2, self.material_layout.clone());
M::specialize(self, &mut descriptor, layout, key)?;
Ok(descriptor)
}
}
impl<M: Material> FromWorld for MaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
MaterialPipeline {
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
material_layout: M::bind_group_layout(render_device),
vertex_shader: match M::vertex_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
fragment_shader: match M::fragment_shader() {
ShaderRef::Default => None,
ShaderRef::Handle(handle) => Some(handle),
ShaderRef::Path(path) => Some(asset_server.load(path)),
},
marker: PhantomData,
}
}
}
type DrawMaterial<M> = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMeshBindGroup<1>,
SetMaterialBindGroup<M, 2>,
DrawMesh,
);
/// Sets the bind group for a given [`Material`] at the configured `I` index.
pub struct SetMaterialBindGroup<M: Material, const I: usize>(PhantomData<M>);
impl<P: PhaseItem, M: Material, const I: usize> RenderCommand<P> for SetMaterialBindGroup<M, I> {
type Param = (
SRes<RenderAssets<PreparedMaterial<M>>>,
SRes<RenderMaterialInstances<M>>,
);
type ViewQuery = ();
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
_view: (),
_item_query: Option<()>,
(materials, material_instances): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let materials = materials.into_inner();
let material_instances = material_instances.into_inner();
let Some(material_asset_id) = material_instances.get(&item.entity()) else {
return RenderCommandResult::Skip;
};
let Some(material) = materials.get(*material_asset_id) else {
return RenderCommandResult::Skip;
};
pass.set_bind_group(I, &material.bind_group, &[]);
RenderCommandResult::Success
}
}
pub type RenderMaterialInstances<M> = ExtractedInstances<AssetId<M>>;
pub const fn alpha_mode_pipeline_key(alpha_mode: AlphaMode, msaa: &Msaa) -> MeshPipelineKey {
match alpha_mode {
// Premultiplied and Add share the same pipeline key
// They're made distinct in the PBR shader, via `premultiply_alpha()`
AlphaMode::Premultiplied | AlphaMode::Add => MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA,
AlphaMode::Blend => MeshPipelineKey::BLEND_ALPHA,
AlphaMode::Multiply => MeshPipelineKey::BLEND_MULTIPLY,
AlphaMode::Mask(_) => MeshPipelineKey::MAY_DISCARD,
AlphaMode::AlphaToCoverage => match *msaa {
Msaa::Off => MeshPipelineKey::MAY_DISCARD,
_ => MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE,
},
_ => MeshPipelineKey::NONE,
}
}
pub const fn tonemapping_pipeline_key(tonemapping: Tonemapping) -> MeshPipelineKey {
match tonemapping {
Tonemapping::None => MeshPipelineKey::TONEMAP_METHOD_NONE,
Tonemapping::Reinhard => MeshPipelineKey::TONEMAP_METHOD_REINHARD,
Tonemapping::ReinhardLuminance => MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE,
Tonemapping::AcesFitted => MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED,
Tonemapping::AgX => MeshPipelineKey::TONEMAP_METHOD_AGX,
Tonemapping::SomewhatBoringDisplayTransform => {
MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM
}
Tonemapping::TonyMcMapface => MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE,
Tonemapping::BlenderFilmic => MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC,
}
}
pub const fn screen_space_specular_transmission_pipeline_key(
screen_space_transmissive_blur_quality: ScreenSpaceTransmissionQuality,
) -> MeshPipelineKey {
match screen_space_transmissive_blur_quality {
ScreenSpaceTransmissionQuality::Low => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW
}
ScreenSpaceTransmissionQuality::Medium => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM
}
ScreenSpaceTransmissionQuality::High => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH
}
ScreenSpaceTransmissionQuality::Ultra => {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA
}
}
}
/// For each view, iterates over all the meshes visible from that view and adds
/// them to [`BinnedRenderPhase`]s or [`SortedRenderPhase`]s as appropriate.
#[allow(clippy::too_many_arguments)]
pub fn queue_material_meshes<M: Material>(
(
opaque_draw_functions,
alpha_mask_draw_functions,
transmissive_draw_functions,
transparent_draw_functions,
): (
Res<DrawFunctions<Opaque3d>>,
Res<DrawFunctions<AlphaMask3d>>,
Res<DrawFunctions<Transmissive3d>>,
Res<DrawFunctions<Transparent3d>>,
),
material_pipeline: Res<MaterialPipeline<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
pipeline_cache: Res<PipelineCache>,
render_meshes: Res<RenderAssets<RenderMesh>>,
render_materials: Res<RenderAssets<PreparedMaterial<M>>>,
render_mesh_instances: Res<RenderMeshInstances>,
render_material_instances: Res<RenderMaterialInstances<M>>,
render_lightmaps: Res<RenderLightmaps>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut opaque_render_phases: ResMut<ViewBinnedRenderPhases<Opaque3d>>,
mut alpha_mask_render_phases: ResMut<ViewBinnedRenderPhases<AlphaMask3d>>,
mut transmissive_render_phases: ResMut<ViewSortedRenderPhases<Transmissive3d>>,
mut transparent_render_phases: ResMut<ViewSortedRenderPhases<Transparent3d>>,
views: Query<(
Entity,
&ExtractedView,
&VisibleEntities,
&Msaa,
Option<&Tonemapping>,
Option<&DebandDither>,
Option<&ShadowFilteringMethod>,
Has<ScreenSpaceAmbientOcclusion>,
(
Has<NormalPrepass>,
Has<DepthPrepass>,
Has<MotionVectorPrepass>,
Has<DeferredPrepass>,
),
Option<&Camera3d>,
Has<TemporalJitter>,
Option<&Projection>,
(
Has<RenderViewLightProbes<EnvironmentMapLight>>,
Has<RenderViewLightProbes<IrradianceVolume>>,
),
)>,
) where
M::Data: PartialEq + Eq + Hash + Clone,
{
for (
view_entity,
view,
visible_entities,
msaa,
tonemapping,
dither,
shadow_filter_method,
ssao,
(normal_prepass, depth_prepass, motion_vector_prepass, deferred_prepass),
camera_3d,
temporal_jitter,
projection,
(has_environment_maps, has_irradiance_volumes),
) in &views
{
let (
Some(opaque_phase),
Some(alpha_mask_phase),
Some(transmissive_phase),
Some(transparent_phase),
) = (
opaque_render_phases.get_mut(&view_entity),
alpha_mask_render_phases.get_mut(&view_entity),
transmissive_render_phases.get_mut(&view_entity),
transparent_render_phases.get_mut(&view_entity),
)
else {
continue;
};
let draw_opaque_pbr = opaque_draw_functions.read().id::<DrawMaterial<M>>();
let draw_alpha_mask_pbr = alpha_mask_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transmissive_pbr = transmissive_draw_functions.read().id::<DrawMaterial<M>>();
let draw_transparent_pbr = transparent_draw_functions.read().id::<DrawMaterial<M>>();
let mut view_key = MeshPipelineKey::from_msaa_samples(msaa.samples())
| MeshPipelineKey::from_hdr(view.hdr);
if normal_prepass {
view_key |= MeshPipelineKey::NORMAL_PREPASS;
}
if depth_prepass {
view_key |= MeshPipelineKey::DEPTH_PREPASS;
}
if motion_vector_prepass {
view_key |= MeshPipelineKey::MOTION_VECTOR_PREPASS;
}
if deferred_prepass {
view_key |= MeshPipelineKey::DEFERRED_PREPASS;
}
if temporal_jitter {
view_key |= MeshPipelineKey::TEMPORAL_JITTER;
}
if has_environment_maps {
view_key |= MeshPipelineKey::ENVIRONMENT_MAP;
}
if has_irradiance_volumes {
view_key |= MeshPipelineKey::IRRADIANCE_VOLUME;
}
if let Some(projection) = projection {
view_key |= match projection {
Projection::Perspective(_) => MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE,
Projection::Orthographic(_) => MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC,
};
}
match shadow_filter_method.unwrap_or(&ShadowFilteringMethod::default()) {
ShadowFilteringMethod::Hardware2x2 => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2;
}
ShadowFilteringMethod::Gaussian => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN;
}
ShadowFilteringMethod::Temporal => {
view_key |= MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL;
}
}
if !view.hdr {
if let Some(tonemapping) = tonemapping {
view_key |= MeshPipelineKey::TONEMAP_IN_SHADER;
view_key |= tonemapping_pipeline_key(*tonemapping);
}
if let Some(DebandDither::Enabled) = dither {
view_key |= MeshPipelineKey::DEBAND_DITHER;
}
}
if ssao {
view_key |= MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION;
}
if let Some(camera_3d) = camera_3d {
view_key |= screen_space_specular_transmission_pipeline_key(
camera_3d.screen_space_specular_transmission_quality,
);
}
let rangefinder = view.rangefinder3d();
for visible_entity in visible_entities.iter::<WithMesh>() {
let Some(material_asset_id) = render_material_instances.get(visible_entity) else {
continue;
};
let Some(mesh_instance) = render_mesh_instances.render_mesh_queue_data(*visible_entity)
else {
continue;
};
let Some(mesh) = render_meshes.get(mesh_instance.mesh_asset_id) else {
continue;
};
let Some(material) = render_materials.get(*material_asset_id) else {
continue;
};
let mut mesh_pipeline_key_bits = material.properties.mesh_pipeline_key_bits;
mesh_pipeline_key_bits.insert(alpha_mode_pipeline_key(
material.properties.alpha_mode,
msaa,
));
let mut mesh_key = view_key
| MeshPipelineKey::from_bits_retain(mesh.key_bits.bits())
| mesh_pipeline_key_bits;
let lightmap_image = render_lightmaps
.render_lightmaps
.get(visible_entity)
.map(|lightmap| lightmap.image);
if lightmap_image.is_some() {
mesh_key |= MeshPipelineKey::LIGHTMAPPED;
}
if render_visibility_ranges.entity_has_crossfading_visibility_ranges(*visible_entity) {
mesh_key |= MeshPipelineKey::VISIBILITY_RANGE_DITHER;
}
if motion_vector_prepass {
// If the previous frame have skins or morph targets, note that.
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_SKIN;
}
if mesh_instance
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH)
{
mesh_key |= MeshPipelineKey::HAS_PREVIOUS_MORPH;
}
}
let pipeline_id = pipelines.specialize(
&pipeline_cache,
&material_pipeline,
MaterialPipelineKey {
mesh_key,
bind_group_data: material.key.clone(),
},
&mesh.layout,
);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
mesh_instance
.material_bind_group_id
.set(material.get_bind_group_id());
match mesh_key
.intersection(MeshPipelineKey::BLEND_RESERVED_BITS | MeshPipelineKey::MAY_DISCARD)
{
MeshPipelineKey::BLEND_OPAQUE | MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
} else if material.properties.render_method == OpaqueRendererMethod::Forward {
let bin_key = Opaque3dBinKey {
draw_function: draw_opaque_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material.get_bind_group_id().0,
lightmap_image,
};
opaque_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.should_batch()),
);
}
}
// Alpha mask
MeshPipelineKey::MAY_DISCARD => {
if material.properties.reads_view_transmission_texture {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transmissive_phase.add(Transmissive3d {
entity: *visible_entity,
draw_function: draw_transmissive_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
} else if material.properties.render_method == OpaqueRendererMethod::Forward {
let bin_key = OpaqueNoLightmap3dBinKey {
draw_function: draw_alpha_mask_pbr,
pipeline: pipeline_id,
asset_id: mesh_instance.mesh_asset_id.into(),
material_bind_group_id: material.get_bind_group_id().0,
};
alpha_mask_phase.add(
bin_key,
*visible_entity,
BinnedRenderPhaseType::mesh(mesh_instance.should_batch()),
);
}
}
_ => {
let distance = rangefinder.distance_translation(&mesh_instance.translation)
+ material.properties.depth_bias;
transparent_phase.add(Transparent3d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
distance,
batch_range: 0..1,
extra_index: PhaseItemExtraIndex::NONE,
});
}
}
}
}
}
/// Default render method used for opaque materials.
#[derive(Default, Resource, Clone, Debug, ExtractResource, Reflect)]
#[reflect(Resource, Default, Debug)]
pub struct DefaultOpaqueRendererMethod(OpaqueRendererMethod);
impl DefaultOpaqueRendererMethod {
pub fn forward() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Forward)
}
pub fn deferred() -> Self {
DefaultOpaqueRendererMethod(OpaqueRendererMethod::Deferred)
}
pub fn set_to_forward(&mut self) {
self.0 = OpaqueRendererMethod::Forward;
}
pub fn set_to_deferred(&mut self) {
self.0 = OpaqueRendererMethod::Deferred;
}
}
/// Render method used for opaque materials.
///
/// The forward rendering main pass draws each mesh entity and shades it according to its
/// corresponding material and the lights that affect it. Some render features like Screen Space
/// Ambient Occlusion require running depth and normal prepasses, that are 'deferred'-like
/// prepasses over all mesh entities to populate depth and normal textures. This means that when
/// using render features that require running prepasses, multiple passes over all visible geometry
/// are required. This can be slow if there is a lot of geometry that cannot be batched into few
/// draws.
///
/// Deferred rendering runs a prepass to gather not only geometric information like depth and
/// normals, but also all the material properties like base color, emissive color, reflectance,
/// metalness, etc, and writes them into a deferred 'g-buffer' texture. The deferred main pass is
/// then a fullscreen pass that reads data from these textures and executes shading. This allows
/// for one pass over geometry, but is at the cost of not being able to use MSAA, and has heavier
/// bandwidth usage which can be unsuitable for low end mobile or other bandwidth-constrained devices.
///
/// If a material indicates `OpaqueRendererMethod::Auto`, `DefaultOpaqueRendererMethod` will be used.
#[derive(Default, Clone, Copy, Debug, PartialEq, Reflect)]
pub enum OpaqueRendererMethod {
#[default]
Forward,
Deferred,
Auto,
}
/// Common [`Material`] properties, calculated for a specific material instance.
pub struct MaterialProperties {
/// Is this material should be rendered by the deferred renderer when.
/// [`AlphaMode::Opaque`] or [`AlphaMode::Mask`]
pub render_method: OpaqueRendererMethod,
/// The [`AlphaMode`] of this material.
pub alpha_mode: AlphaMode,
/// The bits in the [`MeshPipelineKey`] for this material.
///
/// These are precalculated so that we can just "or" them together in
/// [`queue_material_meshes`].
pub mesh_pipeline_key_bits: MeshPipelineKey,
/// Add a bias to the view depth of the mesh which can be used to force a specific render order
/// for meshes with equal depth, to avoid z-fighting.
/// The bias is in depth-texture units so large values may be needed to overcome small depth differences.
pub depth_bias: f32,
/// Whether the material would like to read from [`ViewTransmissionTexture`](bevy_core_pipeline::core_3d::ViewTransmissionTexture).
///
/// This allows taking color output from the [`Opaque3d`] pass as an input, (for screen-space transmission) but requires
/// rendering to take place in a separate [`Transmissive3d`] pass.
pub reads_view_transmission_texture: bool,
}
/// Data prepared for a [`Material`] instance.
pub struct PreparedMaterial<T: Material> {
pub bindings: Vec<(u32, OwnedBindingResource)>,
pub bind_group: BindGroup,
pub key: T::Data,
pub properties: MaterialProperties,
}
impl<M: Material> RenderAsset for PreparedMaterial<M> {
type SourceAsset = M;
type Param = (
SRes<RenderDevice>,
SRes<MaterialPipeline<M>>,
SRes<DefaultOpaqueRendererMethod>,
M::Param,
);
fn prepare_asset(
material: Self::SourceAsset,
(render_device, pipeline, default_opaque_render_method, ref mut material_param): &mut SystemParamItem<Self::Param>,
) -> Result<Self, PrepareAssetError<Self::SourceAsset>> {
match material.as_bind_group(&pipeline.material_layout, render_device, material_param) {
Ok(prepared) => {
let method = match material.opaque_render_method() {
OpaqueRendererMethod::Forward => OpaqueRendererMethod::Forward,
OpaqueRendererMethod::Deferred => OpaqueRendererMethod::Deferred,
OpaqueRendererMethod::Auto => default_opaque_render_method.0,
};
let mut mesh_pipeline_key_bits = MeshPipelineKey::empty();
mesh_pipeline_key_bits.set(
MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE,
material.reads_view_transmission_texture(),
);
Ok(PreparedMaterial {
bindings: prepared.bindings,
bind_group: prepared.bind_group,
key: prepared.data,
properties: MaterialProperties {
alpha_mode: material.alpha_mode(),
depth_bias: material.depth_bias(),
reads_view_transmission_texture: mesh_pipeline_key_bits
.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE),
render_method: method,
mesh_pipeline_key_bits,
},
})
}
Err(AsBindGroupError::RetryNextUpdate) => {
Err(PrepareAssetError::RetryNextUpdate(material))
}
Err(other) => Err(PrepareAssetError::AsBindGroupError(other)),
}
}
}
#[derive(Component, Clone, Copy, Default, PartialEq, Eq, Deref, DerefMut)]
pub struct MaterialBindGroupId(pub Option<BindGroupId>);
impl MaterialBindGroupId {
pub fn new(id: BindGroupId) -> Self {
Self(Some(id))
}
}
impl From<BindGroup> for MaterialBindGroupId {
fn from(value: BindGroup) -> Self {
Self::new(value.id())
}
}
/// An atomic version of [`MaterialBindGroupId`] that can be read from and written to
/// safely from multiple threads.
#[derive(Default)]
pub struct AtomicMaterialBindGroupId(AtomicU32);
impl AtomicMaterialBindGroupId {
/// Stores a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::store`].
pub fn set(&self, id: MaterialBindGroupId) {
let id = if let Some(id) = id.0 {
NonZero::<u32>::from(id).get()
} else {
0
};
self.0.store(id, Ordering::Relaxed);
}
/// Loads a value atomically. Uses [`Ordering::Relaxed`] so there is zero guarantee of ordering
/// relative to other operations.
///
/// See also: [`AtomicU32::load`].
pub fn get(&self) -> MaterialBindGroupId {
MaterialBindGroupId(
NonZero::<u32>::new(self.0.load(Ordering::Relaxed)).map(BindGroupId::from),
)
}
}
impl<T: Material> PreparedMaterial<T> {
pub fn get_bind_group_id(&self) -> MaterialBindGroupId {
MaterialBindGroupId(Some(self.bind_group.id()))
}
}