bevy/crates/bevy_pbr/src/material.rs
Hennadii Chernyshchyk 06d709b178 Make MaterialPipelineKey<T> fields public (#4508)
# Objective

Fixes #4507. This comment provides a very good explanation: https://github.com/bevyengine/bevy/issues/4507#issuecomment-1100905685.

## Solution

Make `MaterialPipelineKey` fields public.
2022-04-18 10:11:14 +00:00

425 lines
18 KiB
Rust

use crate::{
AlphaMode, DrawMesh, MeshPipeline, MeshPipelineKey, MeshUniform, SetMeshBindGroup,
SetMeshViewBindGroup,
};
use bevy_app::{App, Plugin};
use bevy_asset::{AddAsset, Asset, AssetServer, Handle};
use bevy_core_pipeline::{AlphaMask3d, Opaque3d, Transparent3d};
use bevy_ecs::{
entity::Entity,
prelude::World,
system::{
lifetimeless::{Read, SQuery, SRes},
Query, Res, ResMut, SystemParamItem,
},
world::FromWorld,
};
use bevy_render::{
mesh::{Mesh, MeshVertexBufferLayout},
render_asset::{RenderAsset, RenderAssetPlugin, RenderAssets},
render_component::ExtractComponentPlugin,
render_phase::{
AddRenderCommand, DrawFunctions, EntityRenderCommand, RenderCommandResult, RenderPhase,
SetItemPipeline, TrackedRenderPass,
},
render_resource::{
BindGroup, BindGroupLayout, PipelineCache, RenderPipelineDescriptor, Shader,
SpecializedMeshPipeline, SpecializedMeshPipelineError, SpecializedMeshPipelines,
},
renderer::RenderDevice,
view::{ExtractedView, Msaa, VisibleEntities},
RenderApp, RenderStage,
};
use bevy_utils::tracing::error;
use std::hash::Hash;
use std::marker::PhantomData;
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`](crate::MaterialMeshBundle)
/// to spawn entities that are rendered with a specific [`Material`] type. They serve as an easy to use high level
/// way to render [`Mesh`] entities with custom shader logic. For materials that can specialize their [`RenderPipelineDescriptor`]
/// based on specific material values, see [`SpecializedMaterial`]. [`Material`] automatically implements [`SpecializedMaterial`]
/// and can be used anywhere that type is used (such as [`MaterialPlugin`]).
pub trait Material: Asset + RenderAsset + Sized {
/// Returns this material's [`BindGroup`]. This should match the layout returned by [`Material::bind_group_layout`].
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup;
/// Returns this material's [`BindGroupLayout`]. This should match the [`BindGroup`] returned by [`Material::bind_group`].
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout;
/// Returns this material's vertex shader. If [`None`] is returned, the default mesh vertex shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's fragment shader. If [`None`] is returned, the default mesh fragment shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[allow(unused_variables)]
fn alpha_mode(material: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
AlphaMode::Opaque
}
/// The dynamic uniform indices to set for the given `material`'s [`BindGroup`].
/// Defaults to an empty array / no dynamic uniform indices.
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
&[]
}
/// Customizes the default [`RenderPipelineDescriptor`].
#[allow(unused_variables)]
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
layout: &MeshVertexBufferLayout,
) -> Result<(), SpecializedMeshPipelineError> {
Ok(())
}
}
impl<M: Material> SpecializedMaterial for M {
type Key = ();
#[inline]
fn key(_material: &<Self as RenderAsset>::PreparedAsset) -> Self::Key {}
#[inline]
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
_key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<(), SpecializedMeshPipelineError> {
<M as Material>::specialize(pipeline, descriptor, layout)
}
#[inline]
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup {
<M as Material>::bind_group(material)
}
#[inline]
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout {
<M as Material>::bind_group_layout(render_device)
}
#[inline]
fn alpha_mode(material: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
<M as Material>::alpha_mode(material)
}
#[inline]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
<M as Material>::vertex_shader(asset_server)
}
#[inline]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
<M as Material>::fragment_shader(asset_server)
}
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
<M as Material>::dynamic_uniform_indices(material)
}
}
/// Materials are used alongside [`MaterialPlugin`] and [`MaterialMeshBundle`](crate::MaterialMeshBundle)
/// to spawn entities that are rendered with a specific [`SpecializedMaterial`] type. They serve as an easy to use high level
/// way to render [`Mesh`] entities with custom shader logic. [`SpecializedMaterials`](SpecializedMaterial) use their [`SpecializedMaterial::Key`]
/// to customize their [`RenderPipelineDescriptor`] based on specific material values. The slightly simpler [`Material`] trait
/// should be used for materials that do not need specialization. [`Material`] types automatically implement [`SpecializedMaterial`].
pub trait SpecializedMaterial: Asset + RenderAsset + Sized {
/// The key used to specialize this material's [`RenderPipelineDescriptor`].
type Key: PartialEq + Eq + Hash + Clone + Send + Sync;
/// Extract the [`SpecializedMaterial::Key`] for the "prepared" version of this material. This key will be
/// passed in to the [`SpecializedMaterial::specialize`] function when compiling the [`RenderPipeline`](bevy_render::render_resource::RenderPipeline)
/// for a given entity's material.
fn key(material: &<Self as RenderAsset>::PreparedAsset) -> Self::Key;
/// Specializes the given `descriptor` according to the given `key`.
fn specialize(
pipeline: &MaterialPipeline<Self>,
descriptor: &mut RenderPipelineDescriptor,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<(), SpecializedMeshPipelineError>;
/// Returns this material's [`BindGroup`]. This should match the layout returned by [`SpecializedMaterial::bind_group_layout`].
fn bind_group(material: &<Self as RenderAsset>::PreparedAsset) -> &BindGroup;
/// Returns this material's [`BindGroupLayout`]. This should match the [`BindGroup`] returned by [`SpecializedMaterial::bind_group`].
fn bind_group_layout(render_device: &RenderDevice) -> BindGroupLayout;
/// Returns this material's vertex shader. If [`None`] is returned, the default mesh vertex shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn vertex_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's fragment shader. If [`None`] is returned, the default mesh fragment shader will be used.
/// Defaults to [`None`].
#[allow(unused_variables)]
fn fragment_shader(asset_server: &AssetServer) -> Option<Handle<Shader>> {
None
}
/// Returns this material's [`AlphaMode`]. Defaults to [`AlphaMode::Opaque`].
#[allow(unused_variables)]
fn alpha_mode(material: &<Self as RenderAsset>::PreparedAsset) -> AlphaMode {
AlphaMode::Opaque
}
/// The dynamic uniform indices to set for the given `material`'s [`BindGroup`].
/// Defaults to an empty array / no dynamic uniform indices.
#[allow(unused_variables)]
#[inline]
fn dynamic_uniform_indices(material: &<Self as RenderAsset>::PreparedAsset) -> &[u32] {
&[]
}
}
/// Adds the necessary ECS resources and render logic to enable rendering entities using the given [`SpecializedMaterial`]
/// asset type (which includes [`Material`] types).
pub struct MaterialPlugin<M: SpecializedMaterial>(PhantomData<M>);
impl<M: SpecializedMaterial> Default for MaterialPlugin<M> {
fn default() -> Self {
Self(Default::default())
}
}
impl<M: SpecializedMaterial> Plugin for MaterialPlugin<M> {
fn build(&self, app: &mut App) {
app.add_asset::<M>()
.add_plugin(ExtractComponentPlugin::<Handle<M>>::default())
.add_plugin(RenderAssetPlugin::<M>::default());
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.add_render_command::<Transparent3d, DrawMaterial<M>>()
.add_render_command::<Opaque3d, DrawMaterial<M>>()
.add_render_command::<AlphaMask3d, DrawMaterial<M>>()
.init_resource::<MaterialPipeline<M>>()
.init_resource::<SpecializedMeshPipelines<MaterialPipeline<M>>>()
.add_system_to_stage(RenderStage::Queue, queue_material_meshes::<M>);
}
}
}
#[derive(Eq, PartialEq, Clone, Hash)]
pub struct MaterialPipelineKey<T> {
pub mesh_key: MeshPipelineKey,
pub material_key: T,
}
pub struct MaterialPipeline<M: SpecializedMaterial> {
pub mesh_pipeline: MeshPipeline,
pub material_layout: BindGroupLayout,
pub vertex_shader: Option<Handle<Shader>>,
pub fragment_shader: Option<Handle<Shader>>,
marker: PhantomData<M>,
}
impl<M: SpecializedMaterial> SpecializedMeshPipeline for MaterialPipeline<M> {
type Key = MaterialPipelineKey<M::Key>;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayout,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut descriptor = self.mesh_pipeline.specialize(key.mesh_key, layout)?;
if let Some(vertex_shader) = &self.vertex_shader {
descriptor.vertex.shader = vertex_shader.clone();
}
if let Some(fragment_shader) = &self.fragment_shader {
descriptor.fragment.as_mut().unwrap().shader = fragment_shader.clone();
}
// MeshPipeline::specialize's current implementation guarantees that the returned
// specialized descriptor has a populated layout
let descriptor_layout = descriptor.layout.as_mut().unwrap();
descriptor_layout.insert(1, self.material_layout.clone());
M::specialize(self, &mut descriptor, key.material_key, layout)?;
Ok(descriptor)
}
}
impl<M: SpecializedMaterial> FromWorld for MaterialPipeline<M> {
fn from_world(world: &mut World) -> Self {
let asset_server = world.resource::<AssetServer>();
let render_device = world.resource::<RenderDevice>();
let material_layout = M::bind_group_layout(render_device);
MaterialPipeline {
mesh_pipeline: world.resource::<MeshPipeline>().clone(),
material_layout,
vertex_shader: M::vertex_shader(asset_server),
fragment_shader: M::fragment_shader(asset_server),
marker: PhantomData,
}
}
}
type DrawMaterial<M> = (
SetItemPipeline,
SetMeshViewBindGroup<0>,
SetMaterialBindGroup<M, 1>,
SetMeshBindGroup<2>,
DrawMesh,
);
pub struct SetMaterialBindGroup<M: SpecializedMaterial, const I: usize>(PhantomData<M>);
impl<M: SpecializedMaterial, const I: usize> EntityRenderCommand for SetMaterialBindGroup<M, I> {
type Param = (SRes<RenderAssets<M>>, SQuery<Read<Handle<M>>>);
fn render<'w>(
_view: Entity,
item: Entity,
(materials, query): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let material_handle = query.get(item).unwrap();
let material = materials.into_inner().get(material_handle).unwrap();
pass.set_bind_group(
I,
M::bind_group(material),
M::dynamic_uniform_indices(material),
);
RenderCommandResult::Success
}
}
#[allow(clippy::too_many_arguments)]
pub fn queue_material_meshes<M: SpecializedMaterial>(
opaque_draw_functions: Res<DrawFunctions<Opaque3d>>,
alpha_mask_draw_functions: Res<DrawFunctions<AlphaMask3d>>,
transparent_draw_functions: Res<DrawFunctions<Transparent3d>>,
material_pipeline: Res<MaterialPipeline<M>>,
mut pipelines: ResMut<SpecializedMeshPipelines<MaterialPipeline<M>>>,
mut pipeline_cache: ResMut<PipelineCache>,
msaa: Res<Msaa>,
render_meshes: Res<RenderAssets<Mesh>>,
render_materials: Res<RenderAssets<M>>,
material_meshes: Query<(&Handle<M>, &Handle<Mesh>, &MeshUniform)>,
mut views: Query<(
&ExtractedView,
&VisibleEntities,
&mut RenderPhase<Opaque3d>,
&mut RenderPhase<AlphaMask3d>,
&mut RenderPhase<Transparent3d>,
)>,
) {
for (view, visible_entities, mut opaque_phase, mut alpha_mask_phase, mut transparent_phase) in
views.iter_mut()
{
let draw_opaque_pbr = opaque_draw_functions
.read()
.get_id::<DrawMaterial<M>>()
.unwrap();
let draw_alpha_mask_pbr = alpha_mask_draw_functions
.read()
.get_id::<DrawMaterial<M>>()
.unwrap();
let draw_transparent_pbr = transparent_draw_functions
.read()
.get_id::<DrawMaterial<M>>()
.unwrap();
let inverse_view_matrix = view.transform.compute_matrix().inverse();
let inverse_view_row_2 = inverse_view_matrix.row(2);
let msaa_key = MeshPipelineKey::from_msaa_samples(msaa.samples);
for visible_entity in &visible_entities.entities {
if let Ok((material_handle, mesh_handle, mesh_uniform)) =
material_meshes.get(*visible_entity)
{
if let Some(material) = render_materials.get(material_handle) {
if let Some(mesh) = render_meshes.get(mesh_handle) {
let mut mesh_key =
MeshPipelineKey::from_primitive_topology(mesh.primitive_topology)
| msaa_key;
let alpha_mode = M::alpha_mode(material);
if let AlphaMode::Blend = alpha_mode {
mesh_key |= MeshPipelineKey::TRANSPARENT_MAIN_PASS;
}
let material_key = M::key(material);
let pipeline_id = pipelines.specialize(
&mut pipeline_cache,
&material_pipeline,
MaterialPipelineKey {
mesh_key,
material_key,
},
&mesh.layout,
);
let pipeline_id = match pipeline_id {
Ok(id) => id,
Err(err) => {
error!("{}", err);
continue;
}
};
// NOTE: row 2 of the inverse view matrix dotted with column 3 of the model matrix
// gives the z component of translation of the mesh in view space
let mesh_z = inverse_view_row_2.dot(mesh_uniform.transform.col(3));
match alpha_mode {
AlphaMode::Opaque => {
opaque_phase.add(Opaque3d {
entity: *visible_entity,
draw_function: draw_opaque_pbr,
pipeline: pipeline_id,
// NOTE: Front-to-back ordering for opaque with ascending sort means near should have the
// lowest sort key and getting further away should increase. As we have
// -z in front of the camera, values in view space decrease away from the
// camera. Flipping the sign of mesh_z results in the correct front-to-back ordering
distance: -mesh_z,
});
}
AlphaMode::Mask(_) => {
alpha_mask_phase.add(AlphaMask3d {
entity: *visible_entity,
draw_function: draw_alpha_mask_pbr,
pipeline: pipeline_id,
// NOTE: Front-to-back ordering for alpha mask with ascending sort means near should have the
// lowest sort key and getting further away should increase. As we have
// -z in front of the camera, values in view space decrease away from the
// camera. Flipping the sign of mesh_z results in the correct front-to-back ordering
distance: -mesh_z,
});
}
AlphaMode::Blend => {
transparent_phase.add(Transparent3d {
entity: *visible_entity,
draw_function: draw_transparent_pbr,
pipeline: pipeline_id,
// NOTE: Back-to-front ordering for transparent with ascending sort means far should have the
// lowest sort key and getting closer should increase. As we have
// -z in front of the camera, the largest distance is -far with values increasing toward the
// camera. As such we can just use mesh_z as the distance
distance: mesh_z,
});
}
}
}
}
}
}
}
}