bevy/examples/3d/deferred_rendering.rs
Patrick Walton 16531fb3e3
Implement GPU frustum culling. (#12889)
This commit implements opt-in GPU frustum culling, built on top of the
infrastructure in https://github.com/bevyengine/bevy/pull/12773. To
enable it on a camera, add the `GpuCulling` component to it. To
additionally disable CPU frustum culling, add the `NoCpuCulling`
component. Note that adding `GpuCulling` without `NoCpuCulling`
*currently* does nothing useful. The reason why `GpuCulling` doesn't
automatically imply `NoCpuCulling` is that I intend to follow this patch
up with GPU two-phase occlusion culling, and CPU frustum culling plus
GPU occlusion culling seems like a very commonly-desired mode.

Adding the `GpuCulling` component to a view puts that view into
*indirect mode*. This mode makes all drawcalls indirect, relying on the
mesh preprocessing shader to allocate instances dynamically. In indirect
mode, the `PreprocessWorkItem` `output_index` points not to a
`MeshUniform` instance slot but instead to a set of `wgpu`
`IndirectParameters`, from which it allocates an instance slot
dynamically if frustum culling succeeds. Batch building has been updated
to allocate and track indirect parameter slots, and the AABBs are now
supplied to the GPU as `MeshCullingData`.

A small amount of code relating to the frustum culling has been borrowed
from meshlets and moved into `maths.wgsl`. Note that standard Bevy
frustum culling uses AABBs, while meshlets use bounding spheres; this
means that not as much code can be shared as one might think.

This patch doesn't provide any way to perform GPU culling on shadow
maps, to avoid making this patch bigger than it already is. That can be
a followup.

## Changelog

### Added

* Frustum culling can now optionally be done on the GPU. To enable it,
add the `GpuCulling` component to a camera.
* To disable CPU frustum culling, add `NoCpuCulling` to a camera. Note
that `GpuCulling` doesn't automatically imply `NoCpuCulling`.
2024-04-28 12:50:00 +00:00

422 lines
13 KiB
Rust

//! This example compares Forward, Forward + Prepass, and Deferred rendering.
use std::f32::consts::*;
use bevy::{
core_pipeline::{
fxaa::Fxaa,
prepass::{DeferredPrepass, DepthPrepass, MotionVectorPrepass, NormalPrepass},
},
pbr::{
CascadeShadowConfigBuilder, DefaultOpaqueRendererMethod, DirectionalLightShadowMap,
NotShadowCaster, NotShadowReceiver, OpaqueRendererMethod,
},
prelude::*,
render::render_resource::TextureFormat,
};
fn main() {
App::new()
.insert_resource(Msaa::Off)
.insert_resource(DefaultOpaqueRendererMethod::deferred())
.insert_resource(DirectionalLightShadowMap { size: 4096 })
.add_plugins(DefaultPlugins)
.insert_resource(Normal(None))
.insert_resource(Pause(true))
.add_systems(Startup, (setup, setup_parallax))
.add_systems(
Update,
(animate_light_direction, switch_mode, spin, update_normal),
)
.run();
}
fn setup(
mut commands: Commands,
asset_server: Res<AssetServer>,
mut materials: ResMut<Assets<StandardMaterial>>,
mut meshes: ResMut<Assets<Mesh>>,
) {
commands.spawn((
Camera3dBundle {
camera: Camera {
// Deferred both supports both hdr: true and hdr: false
hdr: false,
..default()
},
transform: Transform::from_xyz(0.7, 0.7, 1.0)
.looking_at(Vec3::new(0.0, 0.3, 0.0), Vec3::Y),
..default()
},
FogSettings {
color: Color::srgb_u8(43, 44, 47),
falloff: FogFalloff::Linear {
start: 1.0,
end: 8.0,
},
..default()
},
EnvironmentMapLight {
diffuse_map: asset_server.load("environment_maps/pisa_diffuse_rgb9e5_zstd.ktx2"),
specular_map: asset_server.load("environment_maps/pisa_specular_rgb9e5_zstd.ktx2"),
intensity: 2000.0,
},
DepthPrepass,
MotionVectorPrepass,
DeferredPrepass,
Fxaa::default(),
));
commands.spawn(DirectionalLightBundle {
directional_light: DirectionalLight {
illuminance: 15_000.,
shadows_enabled: true,
..default()
},
cascade_shadow_config: CascadeShadowConfigBuilder {
num_cascades: 3,
maximum_distance: 10.0,
..default()
}
.into(),
transform: Transform::from_rotation(Quat::from_euler(EulerRot::ZYX, 0.0, 0.0, -FRAC_PI_4)),
..default()
});
// FlightHelmet
let helmet_scene = asset_server.load("models/FlightHelmet/FlightHelmet.gltf#Scene0");
commands.spawn(SceneBundle {
scene: helmet_scene.clone(),
..default()
});
commands.spawn(SceneBundle {
scene: helmet_scene,
transform: Transform::from_xyz(-4.0, 0.0, -3.0),
..default()
});
let mut forward_mat: StandardMaterial = Color::srgb(0.1, 0.2, 0.1).into();
forward_mat.opaque_render_method = OpaqueRendererMethod::Forward;
let forward_mat_h = materials.add(forward_mat);
// Plane
commands.spawn(PbrBundle {
mesh: meshes.add(Plane3d::default().mesh().size(50.0, 50.0)),
material: forward_mat_h.clone(),
..default()
});
let cube_h = meshes.add(Cuboid::new(0.1, 0.1, 0.1));
let sphere_h = meshes.add(Sphere::new(0.125).mesh().uv(32, 18));
// Cubes
commands.spawn(PbrBundle {
mesh: cube_h.clone(),
material: forward_mat_h.clone(),
transform: Transform::from_xyz(-0.3, 0.5, -0.2),
..default()
});
commands.spawn(PbrBundle {
mesh: cube_h,
material: forward_mat_h,
transform: Transform::from_xyz(0.2, 0.5, 0.2),
..default()
});
let sphere_color = Color::srgb(10.0, 4.0, 1.0);
let sphere_pos = Transform::from_xyz(0.4, 0.5, -0.8);
// Emissive sphere
let mut unlit_mat: StandardMaterial = sphere_color.into();
unlit_mat.unlit = true;
commands.spawn((
PbrBundle {
mesh: sphere_h.clone(),
material: materials.add(unlit_mat),
transform: sphere_pos,
..default()
},
NotShadowCaster,
));
// Light
commands.spawn(PointLightBundle {
point_light: PointLight {
intensity: 800.0,
radius: 0.125,
shadows_enabled: true,
color: sphere_color,
..default()
},
transform: sphere_pos,
..default()
});
// Spheres
for i in 0..6 {
let j = i % 3;
let s_val = if i < 3 { 0.0 } else { 0.2 };
let material = if j == 0 {
materials.add(StandardMaterial {
base_color: Color::srgb(s_val, s_val, 1.0),
perceptual_roughness: 0.089,
metallic: 0.0,
..default()
})
} else if j == 1 {
materials.add(StandardMaterial {
base_color: Color::srgb(s_val, 1.0, s_val),
perceptual_roughness: 0.089,
metallic: 0.0,
..default()
})
} else {
materials.add(StandardMaterial {
base_color: Color::srgb(1.0, s_val, s_val),
perceptual_roughness: 0.089,
metallic: 0.0,
..default()
})
};
commands.spawn(PbrBundle {
mesh: sphere_h.clone(),
material,
transform: Transform::from_xyz(
j as f32 * 0.25 + if i < 3 { -0.15 } else { 0.15 } - 0.4,
0.125,
-j as f32 * 0.25 + if i < 3 { -0.15 } else { 0.15 } + 0.4,
),
..default()
});
}
// sky
commands.spawn((
PbrBundle {
mesh: meshes.add(Cuboid::new(2.0, 1.0, 1.0)),
material: materials.add(StandardMaterial {
base_color: Srgba::hex("888888").unwrap().into(),
unlit: true,
cull_mode: None,
..default()
}),
transform: Transform::from_scale(Vec3::splat(1_000_000.0)),
..default()
},
NotShadowCaster,
NotShadowReceiver,
));
// Example instructions
commands.spawn(
TextBundle::from_section(
"",
TextStyle {
font_size: 18.0,
..default()
},
)
.with_style(Style {
position_type: PositionType::Absolute,
top: Val::Px(10.0),
left: Val::Px(10.0),
..default()
}),
);
}
#[derive(Resource)]
struct Pause(bool);
fn animate_light_direction(
time: Res<Time>,
mut query: Query<&mut Transform, With<DirectionalLight>>,
pause: Res<Pause>,
) {
if pause.0 {
return;
}
for mut transform in &mut query {
transform.rotate_y(time.delta_seconds() * PI / 5.0);
}
}
fn setup_parallax(
mut commands: Commands,
mut materials: ResMut<Assets<StandardMaterial>>,
mut meshes: ResMut<Assets<Mesh>>,
mut normal: ResMut<Normal>,
asset_server: Res<AssetServer>,
) {
// The normal map. Note that to generate it in the GIMP image editor, you should
// open the depth map, and do Filters → Generic → Normal Map
// You should enable the "flip X" checkbox.
let normal_handle = asset_server.load("textures/parallax_example/cube_normal.png");
normal.0 = Some(normal_handle);
let mut cube = Mesh::from(Cuboid::new(0.15, 0.15, 0.15));
// NOTE: for normal maps and depth maps to work, the mesh
// needs tangents generated.
cube.generate_tangents().unwrap();
let parallax_material = materials.add(StandardMaterial {
perceptual_roughness: 0.4,
base_color_texture: Some(asset_server.load("textures/parallax_example/cube_color.png")),
normal_map_texture: normal.0.clone(),
// The depth map is a greyscale texture where black is the highest level and
// white the lowest.
depth_map: Some(asset_server.load("textures/parallax_example/cube_depth.png")),
parallax_depth_scale: 0.09,
parallax_mapping_method: ParallaxMappingMethod::Relief { max_steps: 4 },
max_parallax_layer_count: 5.0f32.exp2(),
..default()
});
commands.spawn((
PbrBundle {
mesh: meshes.add(cube),
material: parallax_material,
transform: Transform::from_xyz(0.4, 0.2, -0.8),
..default()
},
Spin { speed: 0.3 },
));
}
/// Store handle of the normal to later modify its format in [`update_normal`].
#[derive(Resource)]
struct Normal(Option<Handle<Image>>);
// See `examples/3d/parallax_mapping.rs` example for reasoning
fn update_normal(
mut already_ran: Local<bool>,
mut images: ResMut<Assets<Image>>,
normal: Res<Normal>,
) {
if *already_ran {
return;
}
if let Some(normal) = normal.0.as_ref() {
if let Some(image) = images.get_mut(normal) {
image.texture_descriptor.format = TextureFormat::Rgba8Unorm;
*already_ran = true;
}
}
}
#[derive(Component)]
struct Spin {
speed: f32,
}
fn spin(time: Res<Time>, mut query: Query<(&mut Transform, &Spin)>, pause: Res<Pause>) {
if pause.0 {
return;
}
for (mut transform, spin) in query.iter_mut() {
transform.rotate_local_y(spin.speed * time.delta_seconds());
transform.rotate_local_x(spin.speed * time.delta_seconds());
transform.rotate_local_z(-spin.speed * time.delta_seconds());
}
}
#[derive(Resource, Default)]
enum DefaultRenderMode {
#[default]
Deferred,
Forward,
ForwardPrepass,
}
#[allow(clippy::too_many_arguments)]
fn switch_mode(
mut text: Query<&mut Text>,
mut commands: Commands,
keys: Res<ButtonInput<KeyCode>>,
mut default_opaque_renderer_method: ResMut<DefaultOpaqueRendererMethod>,
mut materials: ResMut<Assets<StandardMaterial>>,
cameras: Query<Entity, With<Camera>>,
mut pause: ResMut<Pause>,
mut hide_ui: Local<bool>,
mut mode: Local<DefaultRenderMode>,
) {
let mut text = text.single_mut();
let text = &mut text.sections[0].value;
text.clear();
if keys.just_pressed(KeyCode::Space) {
pause.0 = !pause.0;
}
if keys.just_pressed(KeyCode::Digit1) {
*mode = DefaultRenderMode::Deferred;
default_opaque_renderer_method.set_to_deferred();
println!("DefaultOpaqueRendererMethod: Deferred");
for _ in materials.iter_mut() {}
for camera in &cameras {
commands.entity(camera).remove::<NormalPrepass>();
commands.entity(camera).insert(DepthPrepass);
commands.entity(camera).insert(MotionVectorPrepass);
commands.entity(camera).insert(DeferredPrepass);
}
}
if keys.just_pressed(KeyCode::Digit2) {
*mode = DefaultRenderMode::Forward;
default_opaque_renderer_method.set_to_forward();
println!("DefaultOpaqueRendererMethod: Forward");
for _ in materials.iter_mut() {}
for camera in &cameras {
commands.entity(camera).remove::<NormalPrepass>();
commands.entity(camera).remove::<DepthPrepass>();
commands.entity(camera).remove::<MotionVectorPrepass>();
commands.entity(camera).remove::<DeferredPrepass>();
}
}
if keys.just_pressed(KeyCode::Digit3) {
*mode = DefaultRenderMode::ForwardPrepass;
default_opaque_renderer_method.set_to_forward();
println!("DefaultOpaqueRendererMethod: Forward + Prepass");
for _ in materials.iter_mut() {}
for camera in &cameras {
commands.entity(camera).insert(NormalPrepass);
commands.entity(camera).insert(DepthPrepass);
commands.entity(camera).insert(MotionVectorPrepass);
commands.entity(camera).remove::<DeferredPrepass>();
}
}
if keys.just_pressed(KeyCode::KeyH) {
*hide_ui = !*hide_ui;
}
if !*hide_ui {
text.push_str("(H) Hide UI\n");
text.push_str("(Space) Play/Pause\n\n");
text.push_str("Rendering Method:\n");
text.push_str(&format!(
"(1) {} Deferred\n",
if let DefaultRenderMode::Deferred = *mode {
">"
} else {
""
}
));
text.push_str(&format!(
"(2) {} Forward\n",
if let DefaultRenderMode::Forward = *mode {
">"
} else {
""
}
));
text.push_str(&format!(
"(3) {} Forward + Prepass\n",
if let DefaultRenderMode::ForwardPrepass = *mode {
">"
} else {
""
}
));
}
}