mirror of
https://github.com/bevyengine/bevy
synced 2025-01-19 16:44:34 +00:00
b39f83640f
# Objective Stumbled on a typo and went on a typo hunt. ## Solution Fix em
752 lines
25 KiB
Rust
752 lines
25 KiB
Rust
mod access;
|
|
mod fetch;
|
|
mod filter;
|
|
mod iter;
|
|
mod par_iter;
|
|
mod state;
|
|
|
|
pub use access::*;
|
|
pub use fetch::*;
|
|
pub use filter::*;
|
|
pub use iter::*;
|
|
pub use par_iter::*;
|
|
pub use state::*;
|
|
|
|
/// A debug checked version of [`Option::unwrap_unchecked`]. Will panic in
|
|
/// debug modes if unwrapping a `None` or `Err` value in debug mode, but is
|
|
/// equivalent to `Option::unwrap_unchecked` or `Result::unwrap_unchecked`
|
|
/// in release mode.
|
|
pub(crate) trait DebugCheckedUnwrap {
|
|
type Item;
|
|
/// # Panics
|
|
/// Panics if the value is `None` or `Err`, only in debug mode.
|
|
///
|
|
/// # Safety
|
|
/// This must never be called on a `None` or `Err` value. This can
|
|
/// only be called on `Some` or `Ok` values.
|
|
unsafe fn debug_checked_unwrap(self) -> Self::Item;
|
|
}
|
|
|
|
// These two impls are explicitly split to ensure that the unreachable! macro
|
|
// does not cause inlining to fail when compiling in release mode.
|
|
#[cfg(debug_assertions)]
|
|
impl<T> DebugCheckedUnwrap for Option<T> {
|
|
type Item = T;
|
|
|
|
#[inline(always)]
|
|
#[track_caller]
|
|
unsafe fn debug_checked_unwrap(self) -> Self::Item {
|
|
if let Some(inner) = self {
|
|
inner
|
|
} else {
|
|
unreachable!()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(not(debug_assertions))]
|
|
impl<T> DebugCheckedUnwrap for Option<T> {
|
|
type Item = T;
|
|
|
|
#[inline(always)]
|
|
unsafe fn debug_checked_unwrap(self) -> Self::Item {
|
|
if let Some(inner) = self {
|
|
inner
|
|
} else {
|
|
std::hint::unreachable_unchecked()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::{ReadOnlyWorldQuery, WorldQuery};
|
|
use crate::prelude::{AnyOf, Entity, Or, QueryState, With, Without};
|
|
use crate::query::{ArchetypeFilter, QueryCombinationIter};
|
|
use crate::system::{IntoSystem, Query, System, SystemState};
|
|
use crate::{self as bevy_ecs, component::Component, world::World};
|
|
use std::any::type_name;
|
|
use std::collections::HashSet;
|
|
|
|
#[derive(Component, Debug, Hash, Eq, PartialEq, Clone, Copy)]
|
|
struct A(usize);
|
|
#[derive(Component, Debug, Eq, PartialEq, Clone, Copy)]
|
|
struct B(usize);
|
|
#[derive(Component, Debug, Eq, PartialEq, Clone, Copy)]
|
|
struct C(usize);
|
|
#[derive(Component, Debug, Eq, PartialEq, Clone, Copy)]
|
|
struct D(usize);
|
|
|
|
#[derive(Component, Debug, Eq, PartialEq, Clone, Copy)]
|
|
#[component(storage = "SparseSet")]
|
|
struct Sparse(usize);
|
|
|
|
#[test]
|
|
fn query() {
|
|
let mut world = World::new();
|
|
world.spawn((A(1), B(1)));
|
|
world.spawn(A(2));
|
|
let values = world.query::<&A>().iter(&world).collect::<Vec<&A>>();
|
|
assert_eq!(values, vec![&A(1), &A(2)]);
|
|
|
|
for (_a, mut b) in world.query::<(&A, &mut B)>().iter_mut(&mut world) {
|
|
b.0 = 3;
|
|
}
|
|
let values = world.query::<&B>().iter(&world).collect::<Vec<&B>>();
|
|
assert_eq!(values, vec![&B(3)]);
|
|
}
|
|
|
|
#[test]
|
|
fn query_filtered_exactsizeiterator_len() {
|
|
fn choose(n: usize, k: usize) -> usize {
|
|
if n == 0 || k == 0 || n < k {
|
|
return 0;
|
|
}
|
|
let ks = 1..=k;
|
|
let ns = (n - k + 1..=n).rev();
|
|
ks.zip(ns).fold(1, |acc, (k, n)| acc * n / k)
|
|
}
|
|
fn assert_combination<Q, F, const K: usize>(world: &mut World, expected_size: usize)
|
|
where
|
|
Q: ReadOnlyWorldQuery,
|
|
F: ReadOnlyWorldQuery,
|
|
F::ReadOnly: ArchetypeFilter,
|
|
{
|
|
let mut query = world.query_filtered::<Q, F>();
|
|
let query_type = type_name::<QueryCombinationIter<Q, F, K>>();
|
|
let iter = query.iter_combinations::<K>(world);
|
|
assert_all_sizes_iterator_equal(iter, expected_size, 0, query_type);
|
|
let iter = query.iter_combinations::<K>(world);
|
|
assert_all_sizes_iterator_equal(iter, expected_size, 1, query_type);
|
|
let iter = query.iter_combinations::<K>(world);
|
|
assert_all_sizes_iterator_equal(iter, expected_size, 5, query_type);
|
|
}
|
|
fn assert_all_sizes_equal<Q, F>(world: &mut World, expected_size: usize)
|
|
where
|
|
Q: ReadOnlyWorldQuery,
|
|
F: ReadOnlyWorldQuery,
|
|
F::ReadOnly: ArchetypeFilter,
|
|
{
|
|
let mut query = world.query_filtered::<Q, F>();
|
|
let query_type = type_name::<QueryState<Q, F>>();
|
|
assert_all_exact_sizes_iterator_equal(query.iter(world), expected_size, 0, query_type);
|
|
assert_all_exact_sizes_iterator_equal(query.iter(world), expected_size, 1, query_type);
|
|
assert_all_exact_sizes_iterator_equal(query.iter(world), expected_size, 5, query_type);
|
|
|
|
let expected = expected_size;
|
|
assert_combination::<Q, F, 0>(world, choose(expected, 0));
|
|
assert_combination::<Q, F, 1>(world, choose(expected, 1));
|
|
assert_combination::<Q, F, 2>(world, choose(expected, 2));
|
|
assert_combination::<Q, F, 5>(world, choose(expected, 5));
|
|
assert_combination::<Q, F, 43>(world, choose(expected, 43));
|
|
assert_combination::<Q, F, 64>(world, choose(expected, 64));
|
|
}
|
|
fn assert_all_exact_sizes_iterator_equal(
|
|
iterator: impl ExactSizeIterator,
|
|
expected_size: usize,
|
|
skip: usize,
|
|
query_type: &'static str,
|
|
) {
|
|
let len = iterator.len();
|
|
println!("len: {len}");
|
|
assert_all_sizes_iterator_equal(iterator, expected_size, skip, query_type);
|
|
assert_eq!(len, expected_size);
|
|
}
|
|
fn assert_all_sizes_iterator_equal(
|
|
mut iterator: impl Iterator,
|
|
expected_size: usize,
|
|
skip: usize,
|
|
query_type: &'static str,
|
|
) {
|
|
let expected_size = expected_size.saturating_sub(skip);
|
|
for _ in 0..skip {
|
|
iterator.next();
|
|
}
|
|
let size_hint_0 = iterator.size_hint().0;
|
|
let size_hint_1 = iterator.size_hint().1;
|
|
// `count` tests that not only it is the expected value, but also
|
|
// the value is accurate to what the query returns.
|
|
let count = iterator.count();
|
|
// This will show up when one of the asserts in this function fails
|
|
println!(
|
|
"query declared sizes: \n\
|
|
for query: {query_type} \n\
|
|
expected: {expected_size} \n\
|
|
size_hint().0: {size_hint_0} \n\
|
|
size_hint().1: {size_hint_1:?} \n\
|
|
count(): {count}"
|
|
);
|
|
assert_eq!(size_hint_0, expected_size);
|
|
assert_eq!(size_hint_1, Some(expected_size));
|
|
assert_eq!(count, expected_size);
|
|
}
|
|
|
|
let mut world = World::new();
|
|
world.spawn((A(1), B(1)));
|
|
world.spawn(A(2));
|
|
world.spawn(A(3));
|
|
|
|
assert_all_sizes_equal::<&A, With<B>>(&mut world, 1);
|
|
assert_all_sizes_equal::<&A, Without<B>>(&mut world, 2);
|
|
|
|
let mut world = World::new();
|
|
world.spawn((A(1), B(1), C(1)));
|
|
world.spawn((A(2), B(2)));
|
|
world.spawn((A(3), B(3)));
|
|
world.spawn((A(4), C(4)));
|
|
world.spawn((A(5), C(5)));
|
|
world.spawn((A(6), C(6)));
|
|
world.spawn(A(7));
|
|
world.spawn(A(8));
|
|
world.spawn(A(9));
|
|
world.spawn(A(10));
|
|
|
|
// With/Without for B and C
|
|
assert_all_sizes_equal::<&A, With<B>>(&mut world, 3);
|
|
assert_all_sizes_equal::<&A, With<C>>(&mut world, 4);
|
|
assert_all_sizes_equal::<&A, Without<B>>(&mut world, 7);
|
|
assert_all_sizes_equal::<&A, Without<C>>(&mut world, 6);
|
|
|
|
// With/Without (And) combinations
|
|
assert_all_sizes_equal::<&A, (With<B>, With<C>)>(&mut world, 1);
|
|
assert_all_sizes_equal::<&A, (With<B>, Without<C>)>(&mut world, 2);
|
|
assert_all_sizes_equal::<&A, (Without<B>, With<C>)>(&mut world, 3);
|
|
assert_all_sizes_equal::<&A, (Without<B>, Without<C>)>(&mut world, 4);
|
|
|
|
// With/Without Or<()> combinations
|
|
assert_all_sizes_equal::<&A, Or<(With<B>, With<C>)>>(&mut world, 6);
|
|
assert_all_sizes_equal::<&A, Or<(With<B>, Without<C>)>>(&mut world, 7);
|
|
assert_all_sizes_equal::<&A, Or<(Without<B>, With<C>)>>(&mut world, 8);
|
|
assert_all_sizes_equal::<&A, Or<(Without<B>, Without<C>)>>(&mut world, 9);
|
|
assert_all_sizes_equal::<&A, (Or<(With<B>,)>, Or<(With<C>,)>)>(&mut world, 1);
|
|
assert_all_sizes_equal::<&A, Or<(Or<(With<B>, With<C>)>, With<D>)>>(&mut world, 6);
|
|
|
|
for i in 11..14 {
|
|
world.spawn((A(i), D(i)));
|
|
}
|
|
|
|
assert_all_sizes_equal::<&A, Or<(Or<(With<B>, With<C>)>, With<D>)>>(&mut world, 9);
|
|
assert_all_sizes_equal::<&A, Or<(Or<(With<B>, With<C>)>, Without<D>)>>(&mut world, 10);
|
|
|
|
// a fair amount of entities
|
|
for i in 14..20 {
|
|
world.spawn((C(i), D(i)));
|
|
}
|
|
assert_all_sizes_equal::<Entity, (With<C>, With<D>)>(&mut world, 6);
|
|
}
|
|
|
|
#[test]
|
|
fn query_iter_combinations() {
|
|
let mut world = World::new();
|
|
|
|
world.spawn((A(1), B(1)));
|
|
world.spawn(A(2));
|
|
world.spawn(A(3));
|
|
world.spawn(A(4));
|
|
|
|
let values: Vec<[&A; 2]> = world.query::<&A>().iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
vec![
|
|
[&A(1), &A(2)],
|
|
[&A(1), &A(3)],
|
|
[&A(1), &A(4)],
|
|
[&A(2), &A(3)],
|
|
[&A(2), &A(4)],
|
|
[&A(3), &A(4)],
|
|
]
|
|
);
|
|
let mut a_query = world.query::<&A>();
|
|
let values: Vec<[&A; 3]> = a_query.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
vec![
|
|
[&A(1), &A(2), &A(3)],
|
|
[&A(1), &A(2), &A(4)],
|
|
[&A(1), &A(3), &A(4)],
|
|
[&A(2), &A(3), &A(4)],
|
|
]
|
|
);
|
|
|
|
let mut query = world.query::<&mut A>();
|
|
let mut combinations = query.iter_combinations_mut(&mut world);
|
|
while let Some([mut a, mut b, mut c]) = combinations.fetch_next() {
|
|
a.0 += 10;
|
|
b.0 += 100;
|
|
c.0 += 1000;
|
|
}
|
|
|
|
let values: Vec<[&A; 3]> = a_query.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
vec![
|
|
[&A(31), &A(212), &A(1203)],
|
|
[&A(31), &A(212), &A(3004)],
|
|
[&A(31), &A(1203), &A(3004)],
|
|
[&A(212), &A(1203), &A(3004)]
|
|
]
|
|
);
|
|
|
|
let mut b_query = world.query::<&B>();
|
|
assert_eq!(
|
|
b_query.iter_combinations::<2>(&world).size_hint(),
|
|
(0, Some(0))
|
|
);
|
|
let values: Vec<[&B; 2]> = b_query.iter_combinations(&world).collect();
|
|
assert_eq!(values, Vec::<[&B; 2]>::new());
|
|
}
|
|
|
|
#[test]
|
|
fn query_filtered_iter_combinations() {
|
|
use bevy_ecs::query::{Added, Changed, Or, With, Without};
|
|
|
|
let mut world = World::new();
|
|
|
|
world.spawn((A(1), B(1)));
|
|
world.spawn(A(2));
|
|
world.spawn(A(3));
|
|
world.spawn(A(4));
|
|
|
|
let mut a_wout_b = world.query_filtered::<&A, Without<B>>();
|
|
let values: HashSet<[&A; 2]> = a_wout_b.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
[[&A(2), &A(3)], [&A(2), &A(4)], [&A(3), &A(4)]]
|
|
.into_iter()
|
|
.collect::<HashSet<_>>()
|
|
);
|
|
|
|
let values: HashSet<[&A; 3]> = a_wout_b.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
[[&A(2), &A(3), &A(4)],].into_iter().collect::<HashSet<_>>()
|
|
);
|
|
|
|
let mut query = world.query_filtered::<&A, Or<(With<A>, With<B>)>>();
|
|
let values: HashSet<[&A; 2]> = query.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
[
|
|
[&A(1), &A(2)],
|
|
[&A(1), &A(3)],
|
|
[&A(1), &A(4)],
|
|
[&A(2), &A(3)],
|
|
[&A(2), &A(4)],
|
|
[&A(3), &A(4)],
|
|
]
|
|
.into_iter()
|
|
.collect::<HashSet<_>>()
|
|
);
|
|
|
|
let mut query = world.query_filtered::<&mut A, Without<B>>();
|
|
let mut combinations = query.iter_combinations_mut(&mut world);
|
|
while let Some([mut a, mut b, mut c]) = combinations.fetch_next() {
|
|
a.0 += 10;
|
|
b.0 += 100;
|
|
c.0 += 1000;
|
|
}
|
|
|
|
let values: HashSet<[&A; 3]> = a_wout_b.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
[[&A(12), &A(103), &A(1004)],]
|
|
.into_iter()
|
|
.collect::<HashSet<_>>()
|
|
);
|
|
|
|
// Check if Added<T>, Changed<T> works
|
|
let mut world = World::new();
|
|
|
|
world.spawn((A(1), B(1)));
|
|
world.spawn((A(2), B(2)));
|
|
world.spawn((A(3), B(3)));
|
|
world.spawn((A(4), B(4)));
|
|
|
|
let mut query_added = world.query_filtered::<&A, Added<A>>();
|
|
|
|
world.clear_trackers();
|
|
world.spawn(A(5));
|
|
|
|
assert_eq!(query_added.iter_combinations::<2>(&world).count(), 0);
|
|
|
|
world.clear_trackers();
|
|
world.spawn(A(6));
|
|
world.spawn(A(7));
|
|
|
|
assert_eq!(query_added.iter_combinations::<2>(&world).count(), 1);
|
|
|
|
world.clear_trackers();
|
|
world.spawn(A(8));
|
|
world.spawn(A(9));
|
|
world.spawn(A(10));
|
|
|
|
assert_eq!(query_added.iter_combinations::<2>(&world).count(), 3);
|
|
|
|
world.clear_trackers();
|
|
|
|
let mut query_changed = world.query_filtered::<&A, Changed<A>>();
|
|
|
|
let mut query = world.query_filtered::<&mut A, With<B>>();
|
|
let mut combinations = query.iter_combinations_mut(&mut world);
|
|
while let Some([mut a, mut b, mut c]) = combinations.fetch_next() {
|
|
a.0 += 10;
|
|
b.0 += 100;
|
|
c.0 += 1000;
|
|
}
|
|
|
|
let values: HashSet<[&A; 3]> = query_changed.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
[
|
|
[&A(31), &A(212), &A(1203)],
|
|
[&A(31), &A(212), &A(3004)],
|
|
[&A(31), &A(1203), &A(3004)],
|
|
[&A(212), &A(1203), &A(3004)]
|
|
]
|
|
.into_iter()
|
|
.collect::<HashSet<_>>()
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn query_iter_combinations_sparse() {
|
|
let mut world = World::new();
|
|
|
|
world.spawn_batch((1..=4).map(Sparse));
|
|
|
|
let mut query = world.query::<&mut Sparse>();
|
|
let mut combinations = query.iter_combinations_mut(&mut world);
|
|
while let Some([mut a, mut b, mut c]) = combinations.fetch_next() {
|
|
a.0 += 10;
|
|
b.0 += 100;
|
|
c.0 += 1000;
|
|
}
|
|
|
|
let mut query = world.query::<&Sparse>();
|
|
let values: Vec<[&Sparse; 3]> = query.iter_combinations(&world).collect();
|
|
assert_eq!(
|
|
values,
|
|
vec![
|
|
[&Sparse(31), &Sparse(212), &Sparse(1203)],
|
|
[&Sparse(31), &Sparse(212), &Sparse(3004)],
|
|
[&Sparse(31), &Sparse(1203), &Sparse(3004)],
|
|
[&Sparse(212), &Sparse(1203), &Sparse(3004)]
|
|
]
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
fn multi_storage_query() {
|
|
let mut world = World::new();
|
|
|
|
world.spawn((Sparse(1), B(2)));
|
|
world.spawn(Sparse(2));
|
|
|
|
let values = world
|
|
.query::<&Sparse>()
|
|
.iter(&world)
|
|
.collect::<Vec<&Sparse>>();
|
|
assert_eq!(values, vec![&Sparse(1), &Sparse(2)]);
|
|
|
|
for (_a, mut b) in world.query::<(&Sparse, &mut B)>().iter_mut(&mut world) {
|
|
b.0 = 3;
|
|
}
|
|
|
|
let values = world.query::<&B>().iter(&world).collect::<Vec<&B>>();
|
|
assert_eq!(values, vec![&B(3)]);
|
|
}
|
|
|
|
#[test]
|
|
fn any_query() {
|
|
let mut world = World::new();
|
|
|
|
world.spawn((A(1), B(2)));
|
|
world.spawn(A(2));
|
|
world.spawn(C(3));
|
|
|
|
let values: Vec<(Option<&A>, Option<&B>)> =
|
|
world.query::<AnyOf<(&A, &B)>>().iter(&world).collect();
|
|
|
|
assert_eq!(
|
|
values,
|
|
vec![(Some(&A(1)), Some(&B(2))), (Some(&A(2)), None),]
|
|
);
|
|
}
|
|
|
|
#[test]
|
|
#[should_panic = "&mut bevy_ecs::query::tests::A conflicts with a previous access in this query."]
|
|
fn self_conflicting_worldquery() {
|
|
#[derive(WorldQuery)]
|
|
#[world_query(mutable)]
|
|
struct SelfConflicting {
|
|
a: &'static mut A,
|
|
b: &'static mut A,
|
|
}
|
|
|
|
let mut world = World::new();
|
|
world.query::<SelfConflicting>();
|
|
}
|
|
|
|
#[test]
|
|
fn derived_worldqueries() {
|
|
let mut world = World::new();
|
|
|
|
world.spawn((A(10), B(18), C(3), Sparse(4)));
|
|
|
|
world.spawn((A(101), B(148), C(13)));
|
|
world.spawn((A(51), B(46), Sparse(72)));
|
|
world.spawn((A(398), C(6), Sparse(9)));
|
|
world.spawn((B(11), C(28), Sparse(92)));
|
|
|
|
world.spawn((C(18348), Sparse(101)));
|
|
world.spawn((B(839), Sparse(5)));
|
|
world.spawn((B(6721), C(122)));
|
|
world.spawn((A(220), Sparse(63)));
|
|
world.spawn((A(1092), C(382)));
|
|
world.spawn((A(2058), B(3019)));
|
|
|
|
world.spawn((B(38), C(8), Sparse(100)));
|
|
world.spawn((A(111), C(52), Sparse(1)));
|
|
world.spawn((A(599), B(39), Sparse(13)));
|
|
world.spawn((A(55), B(66), C(77)));
|
|
|
|
world.spawn_empty();
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct CustomAB {
|
|
a: &'static A,
|
|
b: &'static B,
|
|
}
|
|
|
|
let custom_param_data = world
|
|
.query::<CustomAB>()
|
|
.iter(&world)
|
|
.map(|item| (*item.a, *item.b))
|
|
.collect::<Vec<_>>();
|
|
let normal_data = world
|
|
.query::<(&A, &B)>()
|
|
.iter(&world)
|
|
.map(|(a, b)| (*a, *b))
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_data, normal_data);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct FancyParam {
|
|
e: Entity,
|
|
b: &'static B,
|
|
opt: Option<&'static Sparse>,
|
|
}
|
|
|
|
let custom_param_data = world
|
|
.query::<FancyParam>()
|
|
.iter(&world)
|
|
.map(|fancy| (fancy.e, *fancy.b, fancy.opt.copied()))
|
|
.collect::<Vec<_>>();
|
|
let normal_data = world
|
|
.query::<(Entity, &B, Option<&Sparse>)>()
|
|
.iter(&world)
|
|
.map(|(e, b, opt)| (e, *b, opt.copied()))
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_data, normal_data);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct MaybeBSparse {
|
|
blah: Option<(&'static B, &'static Sparse)>,
|
|
}
|
|
#[derive(WorldQuery)]
|
|
struct MatchEverything {
|
|
abcs: AnyOf<(&'static A, &'static B, &'static C)>,
|
|
opt_bsparse: MaybeBSparse,
|
|
}
|
|
|
|
let custom_param_data = world
|
|
.query::<MatchEverything>()
|
|
.iter(&world)
|
|
.map(
|
|
|MatchEverythingItem {
|
|
abcs: (a, b, c),
|
|
opt_bsparse: MaybeBSparseItem { blah: bsparse },
|
|
}| {
|
|
(
|
|
(a.copied(), b.copied(), c.copied()),
|
|
bsparse.map(|(b, sparse)| (*b, *sparse)),
|
|
)
|
|
},
|
|
)
|
|
.collect::<Vec<_>>();
|
|
let normal_data = world
|
|
.query::<(AnyOf<(&A, &B, &C)>, Option<(&B, &Sparse)>)>()
|
|
.iter(&world)
|
|
.map(|((a, b, c), bsparse)| {
|
|
(
|
|
(a.copied(), b.copied(), c.copied()),
|
|
bsparse.map(|(b, sparse)| (*b, *sparse)),
|
|
)
|
|
})
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_data, normal_data);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct AOrBFilter {
|
|
a: Or<(With<A>, With<B>)>,
|
|
}
|
|
#[derive(WorldQuery)]
|
|
struct NoSparseThatsSlow {
|
|
no: Without<Sparse>,
|
|
}
|
|
|
|
let custom_param_entities = world
|
|
.query_filtered::<Entity, (AOrBFilter, NoSparseThatsSlow)>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
let normal_entities = world
|
|
.query_filtered::<Entity, (Or<(With<A>, With<B>)>, Without<Sparse>)>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_entities, normal_entities);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct CSparseFilter {
|
|
tuple_structs_pls: With<C>,
|
|
ugh: With<Sparse>,
|
|
}
|
|
|
|
let custom_param_entities = world
|
|
.query_filtered::<Entity, CSparseFilter>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
let normal_entities = world
|
|
.query_filtered::<Entity, (With<C>, With<Sparse>)>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_entities, normal_entities);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct WithoutComps {
|
|
_1: Without<A>,
|
|
_2: Without<B>,
|
|
_3: Without<C>,
|
|
}
|
|
|
|
let custom_param_entities = world
|
|
.query_filtered::<Entity, WithoutComps>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
let normal_entities = world
|
|
.query_filtered::<Entity, (Without<A>, Without<B>, Without<C>)>()
|
|
.iter(&world)
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_entities, normal_entities);
|
|
}
|
|
|
|
{
|
|
#[derive(WorldQuery)]
|
|
struct IterCombAB {
|
|
a: &'static A,
|
|
b: &'static B,
|
|
}
|
|
|
|
let custom_param_data = world
|
|
.query::<IterCombAB>()
|
|
.iter_combinations::<2>(&world)
|
|
.map(|[item0, item1]| [(*item0.a, *item0.b), (*item1.a, *item1.b)])
|
|
.collect::<Vec<_>>();
|
|
let normal_data = world
|
|
.query::<(&A, &B)>()
|
|
.iter_combinations(&world)
|
|
.map(|[(a0, b0), (a1, b1)]| [(*a0, *b0), (*a1, *b1)])
|
|
.collect::<Vec<_>>();
|
|
assert_eq!(custom_param_data, normal_data);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn many_entities() {
|
|
let mut world = World::new();
|
|
world.spawn((A(0), B(0)));
|
|
world.spawn((A(0), B(0)));
|
|
world.spawn(A(0));
|
|
world.spawn(B(0));
|
|
{
|
|
fn system(has_a: Query<Entity, With<A>>, has_a_and_b: Query<(&A, &B)>) {
|
|
assert_eq!(has_a_and_b.iter_many(&has_a).count(), 2);
|
|
}
|
|
let mut system = IntoSystem::into_system(system);
|
|
system.initialize(&mut world);
|
|
system.run((), &mut world);
|
|
}
|
|
{
|
|
fn system(has_a: Query<Entity, With<A>>, mut b_query: Query<&mut B>) {
|
|
let mut iter = b_query.iter_many_mut(&has_a);
|
|
while let Some(mut b) = iter.fetch_next() {
|
|
b.0 = 1;
|
|
}
|
|
}
|
|
let mut system = IntoSystem::into_system(system);
|
|
system.initialize(&mut world);
|
|
system.run((), &mut world);
|
|
}
|
|
{
|
|
fn system(query: Query<(Option<&A>, &B)>) {
|
|
for (maybe_a, b) in &query {
|
|
match maybe_a {
|
|
Some(_) => assert_eq!(b.0, 1),
|
|
None => assert_eq!(b.0, 0),
|
|
}
|
|
}
|
|
}
|
|
let mut system = IntoSystem::into_system(system);
|
|
system.initialize(&mut world);
|
|
system.run((), &mut world);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn mut_to_immut_query_methods_have_immut_item() {
|
|
#[derive(Component)]
|
|
struct Foo;
|
|
|
|
let mut world = World::new();
|
|
let e = world.spawn(Foo).id();
|
|
|
|
// state
|
|
let mut q = world.query::<&mut Foo>();
|
|
let _: Option<&Foo> = q.iter(&world).next();
|
|
let _: Option<[&Foo; 2]> = q.iter_combinations::<2>(&world).next();
|
|
let _: Option<&Foo> = q.iter_manual(&world).next();
|
|
let _: Option<&Foo> = q.iter_many(&world, [e]).next();
|
|
q.for_each(&world, |_: &Foo| ());
|
|
|
|
let _: Option<&Foo> = q.get(&world, e).ok();
|
|
let _: Option<&Foo> = q.get_manual(&world, e).ok();
|
|
let _: Option<[&Foo; 1]> = q.get_many(&world, [e]).ok();
|
|
let _: Option<&Foo> = q.get_single(&world).ok();
|
|
let _: &Foo = q.single(&world);
|
|
|
|
// system param
|
|
let mut q = SystemState::<Query<&mut Foo>>::new(&mut world);
|
|
let q = q.get_mut(&mut world);
|
|
let _: Option<&Foo> = q.iter().next();
|
|
let _: Option<[&Foo; 2]> = q.iter_combinations::<2>().next();
|
|
let _: Option<&Foo> = q.iter_many([e]).next();
|
|
q.for_each(|_: &Foo| ());
|
|
|
|
let _: Option<&Foo> = q.get(e).ok();
|
|
let _: Option<&Foo> = q.get_component(e).ok();
|
|
let _: Option<[&Foo; 1]> = q.get_many([e]).ok();
|
|
let _: Option<&Foo> = q.get_single().ok();
|
|
let _: [&Foo; 1] = q.many([e]);
|
|
let _: &Foo = q.single();
|
|
}
|
|
}
|