mirror of
https://github.com/bevyengine/bevy
synced 2025-01-03 00:38:56 +00:00
b35818c0a3
# Objective The `ScheduleGraph` should be expose so that crates like [bevy_mod_debugdump](https://github.com/jakobhellermann/bevy_mod_debugdump/blob/stageless/docs/README.md) can access useful information. ## Solution - expose `ScheduleGraph`, `NodeId`, `BaseSetMembership`, `Dag` - add accessor functions for sets and systems ## Changelog - expose `ScheduleGraph` for use in third party tools This does expose our use of `petgraph` as a graph library, so we can only change that as a breaking change.
276 lines
8.5 KiB
Rust
276 lines
8.5 KiB
Rust
use std::fmt::Debug;
|
|
|
|
use bevy_utils::{
|
|
petgraph::{graphmap::NodeTrait, prelude::*},
|
|
HashMap, HashSet,
|
|
};
|
|
use fixedbitset::FixedBitSet;
|
|
|
|
use crate::schedule::set::*;
|
|
|
|
/// Unique identifier for a system or system set.
|
|
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
|
|
pub enum NodeId {
|
|
System(usize),
|
|
Set(usize),
|
|
}
|
|
|
|
impl NodeId {
|
|
/// Returns the internal integer value.
|
|
pub(crate) fn index(&self) -> usize {
|
|
match self {
|
|
NodeId::System(index) | NodeId::Set(index) => *index,
|
|
}
|
|
}
|
|
|
|
/// Returns `true` if the identified node is a system.
|
|
pub const fn is_system(&self) -> bool {
|
|
matches!(self, NodeId::System(_))
|
|
}
|
|
|
|
/// Returns `true` if the identified node is a system set.
|
|
pub const fn is_set(&self) -> bool {
|
|
matches!(self, NodeId::Set(_))
|
|
}
|
|
}
|
|
|
|
/// Specifies what kind of edge should be added to the dependency graph.
|
|
#[derive(Debug, Clone, Copy, Eq, PartialEq, PartialOrd, Ord, Hash)]
|
|
pub(crate) enum DependencyKind {
|
|
/// A node that should be preceded.
|
|
Before,
|
|
/// A node that should be succeeded.
|
|
After,
|
|
}
|
|
|
|
/// An edge to be added to the dependency graph.
|
|
#[derive(Clone)]
|
|
pub(crate) struct Dependency {
|
|
pub(crate) kind: DependencyKind,
|
|
pub(crate) set: BoxedSystemSet,
|
|
}
|
|
|
|
impl Dependency {
|
|
pub fn new(kind: DependencyKind, set: BoxedSystemSet) -> Self {
|
|
Self { kind, set }
|
|
}
|
|
}
|
|
|
|
/// Configures ambiguity detection for a single system.
|
|
#[derive(Clone, Debug, Default)]
|
|
pub(crate) enum Ambiguity {
|
|
#[default]
|
|
Check,
|
|
/// Ignore warnings with systems in any of these system sets. May contain duplicates.
|
|
IgnoreWithSet(Vec<BoxedSystemSet>),
|
|
/// Ignore all warnings.
|
|
IgnoreAll,
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub(crate) struct GraphInfo {
|
|
pub(crate) sets: Vec<BoxedSystemSet>,
|
|
pub(crate) dependencies: Vec<Dependency>,
|
|
pub(crate) ambiguous_with: Ambiguity,
|
|
pub(crate) add_default_base_set: bool,
|
|
pub(crate) base_set: Option<BoxedSystemSet>,
|
|
}
|
|
|
|
impl Default for GraphInfo {
|
|
fn default() -> Self {
|
|
GraphInfo {
|
|
sets: Vec::new(),
|
|
base_set: None,
|
|
dependencies: Vec::new(),
|
|
ambiguous_with: Ambiguity::default(),
|
|
add_default_base_set: true,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl GraphInfo {
|
|
pub(crate) fn system() -> GraphInfo {
|
|
GraphInfo {
|
|
// systems get the default base set automatically
|
|
add_default_base_set: true,
|
|
..Default::default()
|
|
}
|
|
}
|
|
|
|
pub(crate) fn system_set() -> GraphInfo {
|
|
GraphInfo {
|
|
// sets do not get the default base set automatically
|
|
add_default_base_set: false,
|
|
..Default::default()
|
|
}
|
|
}
|
|
|
|
#[track_caller]
|
|
pub(crate) fn set_base_set(&mut self, set: BoxedSystemSet) {
|
|
if let Some(current) = &self.base_set {
|
|
panic!(
|
|
"Cannot set the base set because base set {current:?} has already been configured."
|
|
);
|
|
} else {
|
|
self.base_set = Some(set);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Converts 2D row-major pair of indices into a 1D array index.
|
|
pub(crate) fn index(row: usize, col: usize, num_cols: usize) -> usize {
|
|
debug_assert!(col < num_cols);
|
|
(row * num_cols) + col
|
|
}
|
|
|
|
/// Converts a 1D array index into a 2D row-major pair of indices.
|
|
pub(crate) fn row_col(index: usize, num_cols: usize) -> (usize, usize) {
|
|
(index / num_cols, index % num_cols)
|
|
}
|
|
|
|
/// Stores the results of the graph analysis.
|
|
pub(crate) struct CheckGraphResults<V> {
|
|
/// Boolean reachability matrix for the graph.
|
|
pub(crate) reachable: FixedBitSet,
|
|
/// Pairs of nodes that have a path connecting them.
|
|
pub(crate) connected: HashSet<(V, V)>,
|
|
/// Pairs of nodes that don't have a path connecting them.
|
|
pub(crate) disconnected: HashSet<(V, V)>,
|
|
/// Edges that are redundant because a longer path exists.
|
|
pub(crate) transitive_edges: Vec<(V, V)>,
|
|
/// Variant of the graph with no transitive edges.
|
|
pub(crate) transitive_reduction: DiGraphMap<V, ()>,
|
|
/// Variant of the graph with all possible transitive edges.
|
|
// TODO: this will very likely be used by "if-needed" ordering
|
|
#[allow(dead_code)]
|
|
pub(crate) transitive_closure: DiGraphMap<V, ()>,
|
|
}
|
|
|
|
impl<V: NodeTrait + Debug> Default for CheckGraphResults<V> {
|
|
fn default() -> Self {
|
|
Self {
|
|
reachable: FixedBitSet::new(),
|
|
connected: HashSet::new(),
|
|
disconnected: HashSet::new(),
|
|
transitive_edges: Vec::new(),
|
|
transitive_reduction: DiGraphMap::new(),
|
|
transitive_closure: DiGraphMap::new(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Processes a DAG and computes its:
|
|
/// - transitive reduction (along with the set of removed edges)
|
|
/// - transitive closure
|
|
/// - reachability matrix (as a bitset)
|
|
/// - pairs of nodes connected by a path
|
|
/// - pairs of nodes not connected by a path
|
|
///
|
|
/// The algorithm implemented comes from
|
|
/// ["On the calculation of transitive reduction-closure of orders"][1] by Habib, Morvan and Rampon.
|
|
///
|
|
/// [1]: https://doi.org/10.1016/0012-365X(93)90164-O
|
|
pub(crate) fn check_graph<V>(
|
|
graph: &DiGraphMap<V, ()>,
|
|
topological_order: &[V],
|
|
) -> CheckGraphResults<V>
|
|
where
|
|
V: NodeTrait + Debug,
|
|
{
|
|
if graph.node_count() == 0 {
|
|
return CheckGraphResults::default();
|
|
}
|
|
|
|
let n = graph.node_count();
|
|
|
|
// build a copy of the graph where the nodes and edges appear in topsorted order
|
|
let mut map = HashMap::with_capacity(n);
|
|
let mut topsorted = DiGraphMap::<V, ()>::new();
|
|
// iterate nodes in topological order
|
|
for (i, &node) in topological_order.iter().enumerate() {
|
|
map.insert(node, i);
|
|
topsorted.add_node(node);
|
|
// insert nodes as successors to their predecessors
|
|
for pred in graph.neighbors_directed(node, Direction::Incoming) {
|
|
topsorted.add_edge(pred, node, ());
|
|
}
|
|
}
|
|
|
|
let mut reachable = FixedBitSet::with_capacity(n * n);
|
|
let mut connected = HashSet::new();
|
|
let mut disconnected = HashSet::new();
|
|
|
|
let mut transitive_edges = Vec::new();
|
|
let mut transitive_reduction = DiGraphMap::<V, ()>::new();
|
|
let mut transitive_closure = DiGraphMap::<V, ()>::new();
|
|
|
|
let mut visited = FixedBitSet::with_capacity(n);
|
|
|
|
// iterate nodes in topological order
|
|
for node in topsorted.nodes() {
|
|
transitive_reduction.add_node(node);
|
|
transitive_closure.add_node(node);
|
|
}
|
|
|
|
// iterate nodes in reverse topological order
|
|
for a in topsorted.nodes().rev() {
|
|
let index_a = *map.get(&a).unwrap();
|
|
// iterate their successors in topological order
|
|
for b in topsorted.neighbors_directed(a, Direction::Outgoing) {
|
|
let index_b = *map.get(&b).unwrap();
|
|
debug_assert!(index_a < index_b);
|
|
if !visited[index_b] {
|
|
// edge <a, b> is not redundant
|
|
transitive_reduction.add_edge(a, b, ());
|
|
transitive_closure.add_edge(a, b, ());
|
|
reachable.insert(index(index_a, index_b, n));
|
|
|
|
let successors = transitive_closure
|
|
.neighbors_directed(b, Direction::Outgoing)
|
|
.collect::<Vec<_>>();
|
|
for c in successors {
|
|
let index_c = *map.get(&c).unwrap();
|
|
debug_assert!(index_b < index_c);
|
|
if !visited[index_c] {
|
|
visited.insert(index_c);
|
|
transitive_closure.add_edge(a, c, ());
|
|
reachable.insert(index(index_a, index_c, n));
|
|
}
|
|
}
|
|
} else {
|
|
// edge <a, b> is redundant
|
|
transitive_edges.push((a, b));
|
|
}
|
|
}
|
|
|
|
visited.clear();
|
|
}
|
|
|
|
// partition pairs of nodes into "connected by path" and "not connected by path"
|
|
for i in 0..(n - 1) {
|
|
// reachable is upper triangular because the nodes were topsorted
|
|
for index in index(i, i + 1, n)..=index(i, n - 1, n) {
|
|
let (a, b) = row_col(index, n);
|
|
let pair = (topological_order[a], topological_order[b]);
|
|
if reachable[index] {
|
|
connected.insert(pair);
|
|
} else {
|
|
disconnected.insert(pair);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fill diagonal (nodes reach themselves)
|
|
// for i in 0..n {
|
|
// reachable.set(index(i, i, n), true);
|
|
// }
|
|
|
|
CheckGraphResults {
|
|
reachable,
|
|
connected,
|
|
disconnected,
|
|
transitive_edges,
|
|
transitive_reduction,
|
|
transitive_closure,
|
|
}
|
|
}
|