2
0
Fork 0
mirror of https://github.com/bevyengine/bevy synced 2024-12-23 19:43:07 +00:00
bevy/assets/shaders/irradiance_volume_voxel_visualization.wgsl
Ricky Taylor 9b9d3d81cb
Normalise matrix naming ()
# Objective
- Fixes 
- Fixes 

## Solution
- Name all matrices `x_from_y`, for example `world_from_view`.

## Testing
- I've tested most of the 3D examples. The `lighting` example
particularly should hit a lot of the changes and appears to run fine.

---

## Changelog
- Renamed matrices across the engine to follow a `y_from_x` naming,
making the space conversion more obvious.

## Migration Guide
- `Frustum`'s `from_view_projection`, `from_view_projection_custom_far`
and `from_view_projection_no_far` were renamed to
`from_clip_from_world`, `from_clip_from_world_custom_far` and
`from_clip_from_world_no_far`.
- `ComputedCameraValues::projection_matrix` was renamed to
`clip_from_view`.
- `CameraProjection::get_projection_matrix` was renamed to
`get_clip_from_view` (this affects implementations on `Projection`,
`PerspectiveProjection` and `OrthographicProjection`).
- `ViewRangefinder3d::from_view_matrix` was renamed to
`from_world_from_view`.
- `PreviousViewData`'s members were renamed to `view_from_world` and
`clip_from_world`.
- `ExtractedView`'s `projection`, `transform` and `view_projection` were
renamed to `clip_from_view`, `world_from_view` and `clip_from_world`.
- `ViewUniform`'s `view_proj`, `unjittered_view_proj`,
`inverse_view_proj`, `view`, `inverse_view`, `projection` and
`inverse_projection` were renamed to `clip_from_world`,
`unjittered_clip_from_world`, `world_from_clip`, `world_from_view`,
`view_from_world`, `clip_from_view` and `view_from_clip`.
- `GpuDirectionalCascade::view_projection` was renamed to
`clip_from_world`.
- `MeshTransforms`' `transform` and `previous_transform` were renamed to
`world_from_local` and `previous_world_from_local`.
- `MeshUniform`'s `transform`, `previous_transform`,
`inverse_transpose_model_a` and `inverse_transpose_model_b` were renamed
to `world_from_local`, `previous_world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh` type in WGSL mirrors this, however `transform` and
`previous_transform` were named `model` and `previous_model`).
- `Mesh2dTransforms::transform` was renamed to `world_from_local`.
- `Mesh2dUniform`'s `transform`, `inverse_transpose_model_a` and
`inverse_transpose_model_b` were renamed to `world_from_local`,
`local_from_world_transpose_a` and `local_from_world_transpose_b` (the
`Mesh2d` type in WGSL mirrors this).
- In WGSL, in `bevy_pbr::mesh_functions`, `get_model_matrix` and
`get_previous_model_matrix` were renamed to `get_world_from_local` and
`get_previous_world_from_local`.
- In WGSL, `bevy_sprite::mesh2d_functions::get_model_matrix` was renamed
to `get_world_from_local`.
2024-06-03 16:56:53 +00:00

35 lines
1.5 KiB
WebGPU Shading Language

#import bevy_pbr::forward_io::VertexOutput
#import bevy_pbr::irradiance_volume
#import bevy_pbr::mesh_view_bindings
struct VoxelVisualizationIrradianceVolumeInfo {
world_from_voxel: mat4x4<f32>,
voxel_from_world: mat4x4<f32>,
resolution: vec3<u32>,
// A scale factor that's applied to the diffuse and specular light from the
// light probe. This is in units of cd/m² (candela per square meter).
intensity: f32,
}
@group(2) @binding(100)
var<uniform> irradiance_volume_info: VoxelVisualizationIrradianceVolumeInfo;
@fragment
fn fragment(mesh: VertexOutput) -> @location(0) vec4<f32> {
// Snap the world position we provide to `irradiance_volume_light()` to the
// middle of the nearest texel.
var unit_pos = (irradiance_volume_info.voxel_from_world *
vec4(mesh.world_position.xyz, 1.0f)).xyz;
let resolution = vec3<f32>(irradiance_volume_info.resolution);
let stp = clamp((unit_pos + 0.5) * resolution, vec3(0.5f), resolution - vec3(0.5f));
let stp_rounded = round(stp - 0.5f) + 0.5f;
let rounded_world_pos = (irradiance_volume_info.world_from_voxel * vec4(stp_rounded, 1.0f)).xyz;
// `irradiance_volume_light()` multiplies by intensity, so cancel it out.
// If we take intensity into account, the cubes will be way too bright.
let rgb = irradiance_volume::irradiance_volume_light(
mesh.world_position.xyz,
mesh.world_normal) / irradiance_volume_info.intensity;
return vec4<f32>(rgb, 1.0f);
}