bevy/crates/bevy_ui/src/focus.rs
Gino Valente aeeb20ec4c
bevy_reflect: FromReflect Ergonomics Implementation (#6056)
# Objective

**This implementation is based on
https://github.com/bevyengine/rfcs/pull/59.**

---

Resolves #4597

Full details and motivation can be found in the RFC, but here's a brief
summary.

`FromReflect` is a very powerful and important trait within the
reflection API. It allows Dynamic types (e.g., `DynamicList`, etc.) to
be formed into Real ones (e.g., `Vec<i32>`, etc.).

This mainly comes into play concerning deserialization, where the
reflection deserializers both return a `Box<dyn Reflect>` that almost
always contain one of these Dynamic representations of a Real type. To
convert this to our Real type, we need to use `FromReflect`.

It also sneaks up in other ways. For example, it's a required bound for
`T` in `Vec<T>` so that `Vec<T>` as a whole can be made `FromReflect`.
It's also required by all fields of an enum as it's used as part of the
`Reflect::apply` implementation.

So in other words, much like `GetTypeRegistration` and `Typed`, it is
very much a core reflection trait.

The problem is that it is not currently treated like a core trait and is
not automatically derived alongside `Reflect`. This makes using it a bit
cumbersome and easy to forget.

## Solution

Automatically derive `FromReflect` when deriving `Reflect`.

Users can then choose to opt-out if needed using the
`#[reflect(from_reflect = false)]` attribute.

```rust
#[derive(Reflect)]
struct Foo;

#[derive(Reflect)]
#[reflect(from_reflect = false)]
struct Bar;

fn test<T: FromReflect>(value: T) {}

test(Foo); // <-- OK
test(Bar); // <-- Panic! Bar does not implement trait `FromReflect`
```

#### `ReflectFromReflect`

This PR also automatically adds the `ReflectFromReflect` (introduced in
#6245) registration to the derived `GetTypeRegistration` impl— if the
type hasn't opted out of `FromReflect` of course.

<details>
<summary><h4>Improved Deserialization</h4></summary>

> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.

And since we can do all the above, we might as well improve
deserialization. We can now choose to deserialize into a Dynamic type or
automatically convert it using `FromReflect` under the hood.

`[Un]TypedReflectDeserializer::new` will now perform the conversion and
return the `Box`'d Real type.

`[Un]TypedReflectDeserializer::new_dynamic` will work like what we have
now and simply return the `Box`'d Dynamic type.

```rust
// Returns the Real type
let reflect_deserializer = UntypedReflectDeserializer::new(&registry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;

let output: SomeStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;

// Returns the Dynamic type
let reflect_deserializer = UntypedReflectDeserializer::new_dynamic(&registry);
let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;

let output: DynamicStruct = reflect_deserializer.deserialize(&mut deserializer)?.take()?;
```

</details>

---

## Changelog

* `FromReflect` is now automatically derived within the `Reflect` derive
macro
* This includes auto-registering `ReflectFromReflect` in the derived
`GetTypeRegistration` impl
* ~~Renamed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic`, respectively~~ **Descoped**
* ~~Changed `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` to automatically convert the
deserialized output using `FromReflect`~~ **Descoped**

## Migration Guide

* `FromReflect` is now automatically derived within the `Reflect` derive
macro. Items with both derives will need to remove the `FromReflect`
one.

  ```rust
  // OLD
  #[derive(Reflect, FromReflect)]
  struct Foo;
  
  // NEW
  #[derive(Reflect)]
  struct Foo;
  ```

If using a manual implementation of `FromReflect` and the `Reflect`
derive, users will need to opt-out of the automatic implementation.

  ```rust
  // OLD
  #[derive(Reflect)]
  struct Foo;
  
  impl FromReflect for Foo {/* ... */}
  
  // NEW
  #[derive(Reflect)]
  #[reflect(from_reflect = false)]
  struct Foo;
  
  impl FromReflect for Foo {/* ... */}
  ```

<details>
<summary><h4>Removed Migrations</h4></summary>

> **Warning**
> This section includes changes that have since been descoped from this
PR. They will likely be implemented again in a followup PR. I am mainly
leaving these details in for archival purposes, as well as for reference
when implementing this logic again.

* The reflect deserializers now perform a `FromReflect` conversion
internally. The expected output of `TypedReflectDeserializer::new` and
`UntypedReflectDeserializer::new` is no longer a Dynamic (e.g.,
`DynamicList`), but its Real counterpart (e.g., `Vec<i32>`).

  ```rust
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(&registry);
  let mut deserializer = ron:🇩🇪:Deserializer::from_str(input)?;
  
  // OLD
let output: DynamicStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
  
  // NEW
let output: SomeStruct = reflect_deserializer.deserialize(&mut
deserializer)?.take()?;
  ```

Alternatively, if this behavior isn't desired, use the
`TypedReflectDeserializer::new_dynamic` and
`UntypedReflectDeserializer::new_dynamic` methods instead:

  ```rust
  // OLD
  let reflect_deserializer = UntypedReflectDeserializer::new(&registry);
  
  // NEW
let reflect_deserializer =
UntypedReflectDeserializer::new_dynamic(&registry);
  ```

</details>

---------

Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2023-06-29 01:31:34 +00:00

296 lines
11 KiB
Rust

use crate::{camera_config::UiCameraConfig, CalculatedClip, Node, UiStack};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
change_detection::DetectChangesMut,
entity::Entity,
prelude::{Component, With},
query::WorldQuery,
reflect::ReflectComponent,
system::{Local, Query, Res},
};
use bevy_input::{mouse::MouseButton, touch::Touches, Input};
use bevy_math::Vec2;
use bevy_reflect::{Reflect, ReflectDeserialize, ReflectSerialize};
use bevy_render::{camera::NormalizedRenderTarget, prelude::Camera, view::ComputedVisibility};
use bevy_transform::components::GlobalTransform;
use bevy_window::{PrimaryWindow, Window};
use serde::{Deserialize, Serialize};
use smallvec::SmallVec;
/// Describes what type of input interaction has occurred for a UI node.
///
/// This is commonly queried with a `Changed<Interaction>` filter.
///
/// Updated in [`ui_focus_system`].
///
/// If a UI node has both [`Interaction`] and [`ComputedVisibility`] components,
/// [`Interaction`] will always be [`Interaction::None`]
/// when [`ComputedVisibility::is_visible()`] is false.
/// This ensures that hidden UI nodes are not interactable,
/// and do not end up stuck in an active state if hidden at the wrong time.
///
/// Note that you can also control the visibility of a node using the [`Display`](crate::ui_node::Display) property,
/// which fully collapses it during layout calculations.
#[derive(Component, Copy, Clone, Eq, PartialEq, Debug, Reflect, Serialize, Deserialize)]
#[reflect(Component, Serialize, Deserialize, PartialEq)]
pub enum Interaction {
/// The node has been clicked
Clicked,
/// The node has been hovered over
Hovered,
/// Nothing has happened
None,
}
impl Interaction {
const DEFAULT: Self = Self::None;
}
impl Default for Interaction {
fn default() -> Self {
Self::DEFAULT
}
}
/// A component storing the position of the mouse relative to the node, (0., 0.) being the top-left corner and (1., 1.) being the bottom-right
/// If the mouse is not over the node, the value will go beyond the range of (0., 0.) to (1., 1.)
/// A None value means that the cursor position is unknown.
///
/// It can be used alongside interaction to get the position of the press.
#[derive(
Component,
Deref,
DerefMut,
Copy,
Clone,
Default,
PartialEq,
Debug,
Reflect,
Serialize,
Deserialize,
)]
#[reflect(Component, Serialize, Deserialize, PartialEq)]
pub struct RelativeCursorPosition {
/// Cursor position relative to size and position of the Node.
pub normalized: Option<Vec2>,
}
impl RelativeCursorPosition {
/// A helper function to check if the mouse is over the node
pub fn mouse_over(&self) -> bool {
self.normalized
.map(|position| (0.0..1.).contains(&position.x) && (0.0..1.).contains(&position.y))
.unwrap_or(false)
}
}
/// Describes whether the node should block interactions with lower nodes
#[derive(Component, Copy, Clone, Eq, PartialEq, Debug, Reflect, Serialize, Deserialize)]
#[reflect(Component, Serialize, Deserialize, PartialEq)]
pub enum FocusPolicy {
/// Blocks interaction
Block,
/// Lets interaction pass through
Pass,
}
impl FocusPolicy {
const DEFAULT: Self = Self::Pass;
}
impl Default for FocusPolicy {
fn default() -> Self {
Self::DEFAULT
}
}
/// Contains entities whose Interaction should be set to None
#[derive(Default)]
pub struct State {
entities_to_reset: SmallVec<[Entity; 1]>,
}
/// Main query for [`ui_focus_system`]
#[derive(WorldQuery)]
#[world_query(mutable)]
pub struct NodeQuery {
entity: Entity,
node: &'static Node,
global_transform: &'static GlobalTransform,
interaction: Option<&'static mut Interaction>,
relative_cursor_position: Option<&'static mut RelativeCursorPosition>,
focus_policy: Option<&'static FocusPolicy>,
calculated_clip: Option<&'static CalculatedClip>,
computed_visibility: Option<&'static ComputedVisibility>,
}
/// The system that sets Interaction for all UI elements based on the mouse cursor activity
///
/// Entities with a hidden [`ComputedVisibility`] are always treated as released.
#[allow(clippy::too_many_arguments)]
pub fn ui_focus_system(
mut state: Local<State>,
camera: Query<(&Camera, Option<&UiCameraConfig>)>,
windows: Query<&Window>,
mouse_button_input: Res<Input<MouseButton>>,
touches_input: Res<Touches>,
ui_stack: Res<UiStack>,
mut node_query: Query<NodeQuery>,
primary_window: Query<Entity, With<PrimaryWindow>>,
) {
let primary_window = primary_window.iter().next();
// reset entities that were both clicked and released in the last frame
for entity in state.entities_to_reset.drain(..) {
if let Ok(mut interaction) = node_query.get_component_mut::<Interaction>(entity) {
*interaction = Interaction::None;
}
}
let mouse_released =
mouse_button_input.just_released(MouseButton::Left) || touches_input.any_just_released();
if mouse_released {
for node in node_query.iter_mut() {
if let Some(mut interaction) = node.interaction {
if *interaction == Interaction::Clicked {
*interaction = Interaction::None;
}
}
}
}
let mouse_clicked =
mouse_button_input.just_pressed(MouseButton::Left) || touches_input.any_just_pressed();
let is_ui_disabled =
|camera_ui| matches!(camera_ui, Some(&UiCameraConfig { show_ui: false, .. }));
let cursor_position = camera
.iter()
.filter(|(_, camera_ui)| !is_ui_disabled(*camera_ui))
.filter_map(|(camera, _)| {
if let Some(NormalizedRenderTarget::Window(window_ref)) =
camera.target.normalize(primary_window)
{
Some(window_ref)
} else {
None
}
})
.find_map(|window_ref| {
windows
.get(window_ref.entity())
.ok()
.and_then(|window| window.cursor_position())
})
.or_else(|| touches_input.first_pressed_position());
// prepare an iterator that contains all the nodes that have the cursor in their rect,
// from the top node to the bottom one. this will also reset the interaction to `None`
// for all nodes encountered that are no longer hovered.
let mut hovered_nodes = ui_stack
.uinodes
.iter()
// reverse the iterator to traverse the tree from closest nodes to furthest
.rev()
.filter_map(|entity| {
if let Ok(node) = node_query.get_mut(*entity) {
// Nodes that are not rendered should not be interactable
if let Some(computed_visibility) = node.computed_visibility {
if !computed_visibility.is_visible() {
// Reset their interaction to None to avoid strange stuck state
if let Some(mut interaction) = node.interaction {
// We cannot simply set the interaction to None, as that will trigger change detection repeatedly
interaction.set_if_neq(Interaction::None);
}
return None;
}
}
let position = node.global_transform.translation();
let ui_position = position.truncate();
let extents = node.node.size() / 2.0;
let mut min = ui_position - extents;
if let Some(clip) = node.calculated_clip {
min = Vec2::max(min, clip.clip.min);
}
// The mouse position relative to the node
// (0., 0.) is the top-left corner, (1., 1.) is the bottom-right corner
let relative_cursor_position = cursor_position
.map(|cursor_position| (cursor_position - min) / node.node.size());
// If the current cursor position is within the bounds of the node, consider it for
// clicking
let relative_cursor_position_component = RelativeCursorPosition {
normalized: relative_cursor_position,
};
let contains_cursor = relative_cursor_position_component.mouse_over();
// Save the relative cursor position to the correct component
if let Some(mut node_relative_cursor_position_component) =
node.relative_cursor_position
{
*node_relative_cursor_position_component = relative_cursor_position_component;
}
if contains_cursor {
Some(*entity)
} else {
if let Some(mut interaction) = node.interaction {
if *interaction == Interaction::Hovered || (cursor_position.is_none()) {
interaction.set_if_neq(Interaction::None);
}
}
None
}
} else {
None
}
})
.collect::<Vec<Entity>>()
.into_iter();
// set Clicked or Hovered on top nodes. as soon as a node with a `Block` focus policy is detected,
// the iteration will stop on it because it "captures" the interaction.
let mut iter = node_query.iter_many_mut(hovered_nodes.by_ref());
while let Some(node) = iter.fetch_next() {
if let Some(mut interaction) = node.interaction {
if mouse_clicked {
// only consider nodes with Interaction "clickable"
if *interaction != Interaction::Clicked {
*interaction = Interaction::Clicked;
// if the mouse was simultaneously released, reset this Interaction in the next
// frame
if mouse_released {
state.entities_to_reset.push(node.entity);
}
}
} else if *interaction == Interaction::None {
*interaction = Interaction::Hovered;
}
}
match node.focus_policy.unwrap_or(&FocusPolicy::Block) {
FocusPolicy::Block => {
break;
}
FocusPolicy::Pass => { /* allow the next node to be hovered/clicked */ }
}
}
// reset `Interaction` for the remaining lower nodes to `None`. those are the nodes that remain in
// `moused_over_nodes` after the previous loop is exited.
let mut iter = node_query.iter_many_mut(hovered_nodes);
while let Some(node) = iter.fetch_next() {
if let Some(mut interaction) = node.interaction {
// don't reset clicked nodes because they're handled separately
if *interaction != Interaction::Clicked {
interaction.set_if_neq(Interaction::None);
}
}
}
}