bevy/examples/3d/transparency_3d.rs
Joona Aalto 54006b107b
Migrate meshes and materials to required components (#15524)
# Objective

A big step in the migration to required components: meshes and
materials!

## Solution

As per the [selected
proposal](https://hackmd.io/@bevy/required_components/%2Fj9-PnF-2QKK0on1KQ29UWQ):

- Deprecate `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle`.
- Add `Mesh2d` and `Mesh3d` components, which wrap a `Handle<Mesh>`.
- Add `MeshMaterial2d<M: Material2d>` and `MeshMaterial3d<M: Material>`,
which wrap a `Handle<M>`.
- Meshes *without* a mesh material should be rendered with a default
material. The existence of a material is determined by
`HasMaterial2d`/`HasMaterial3d`, which is required by
`MeshMaterial2d`/`MeshMaterial3d`. This gets around problems with the
generics.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, previously nothing was rendered. Now,
it renders a white default `ColorMaterial` in 2D and a
`StandardMaterial` in 3D (this can be overridden). Below, only every
other entity has a material:

![Näyttökuva 2024-09-29
181746](https://github.com/user-attachments/assets/5c8be029-d2fe-4b8c-ae89-17a72ff82c9a)

![Näyttökuva 2024-09-29
181918](https://github.com/user-attachments/assets/58adbc55-5a1e-4c7d-a2c7-ed456227b909)

Why white? This is still open for discussion, but I think white makes
sense for a *default* material, while *invalid* asset handles pointing
to nothing should have something like a pink material to indicate that
something is broken (I don't handle that in this PR yet). This is kind
of a mix of Godot and Unity: Godot just renders a white material for
non-existent materials, while Unity renders nothing when no materials
exist, but renders pink for invalid materials. I can also change the
default material to pink if that is preferable though.

## Testing

I ran some 2D and 3D examples to test if anything changed visually. I
have not tested all examples or features yet however. If anyone wants to
test more extensively, it would be appreciated!

## Implementation Notes

- The relationship between `bevy_render` and `bevy_pbr` is weird here.
`bevy_render` needs `Mesh3d` for its own systems, but `bevy_pbr` has all
of the material logic, and `bevy_render` doesn't depend on it. I feel
like the two crates should be refactored in some way, but I think that's
out of scope for this PR.
- I didn't migrate meshlets to required components yet. That can
probably be done in a follow-up, as this is already a huge PR.
- It is becoming increasingly clear to me that we really, *really* want
to disallow raw asset handles as components. They caused me a *ton* of
headache here already, and it took me a long time to find every place
that queried for them or inserted them directly on entities, since there
were no compiler errors for it. If we don't remove the `Component`
derive, I expect raw asset handles to be a *huge* footgun for users as
we transition to wrapper components, especially as handles as components
have been the norm so far. I personally consider this to be a blocker
for 0.15: we need to migrate to wrapper components for asset handles
everywhere, and remove the `Component` derive. Also see
https://github.com/bevyengine/bevy/issues/14124.

---

## Migration Guide

Asset handles for meshes and mesh materials must now be wrapped in the
`Mesh2d` and `MeshMaterial2d` or `Mesh3d` and `MeshMaterial3d`
components for 2D and 3D respectively. Raw handles as components no
longer render meshes.

Additionally, `MaterialMesh2dBundle`, `MaterialMeshBundle`, and
`PbrBundle` have been deprecated. Instead, use the mesh and material
components directly.

Previously:

```rust
commands.spawn(MaterialMesh2dBundle {
    mesh: meshes.add(Circle::new(100.0)).into(),
    material: materials.add(Color::srgb(7.5, 0.0, 7.5)),
    transform: Transform::from_translation(Vec3::new(-200., 0., 0.)),
    ..default()
});
```

Now:

```rust
commands.spawn((
    Mesh2d(meshes.add(Circle::new(100.0))),
    MeshMaterial2d(materials.add(Color::srgb(7.5, 0.0, 7.5))),
    Transform::from_translation(Vec3::new(-200., 0., 0.)),
));
```

If the mesh material is missing, a white default material is now used.
Previously, nothing was rendered if the material was missing.

The `WithMesh2d` and `WithMesh3d` query filter type aliases have also
been removed. Simply use `With<Mesh2d>` or `With<Mesh3d>`.

---------

Co-authored-by: Tim Blackbird <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2024-10-01 21:33:17 +00:00

115 lines
4.4 KiB
Rust

//! Demonstrates how to use transparency in 3D.
//! Shows the effects of different blend modes.
//! The `fade_transparency` system smoothly changes the transparency over time.
use bevy::{math::ops, prelude::*};
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, fade_transparency)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Opaque plane, uses `alpha_mode: Opaque` by default
commands.spawn((
Mesh3d(meshes.add(Plane3d::default().mesh().size(6.0, 6.0))),
MeshMaterial3d(materials.add(Color::srgb(0.3, 0.5, 0.3))),
));
// Transparent sphere, uses `alpha_mode: Mask(f32)`
commands.spawn((
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
MeshMaterial3d(materials.add(StandardMaterial {
// Alpha channel of the color controls transparency.
// We set it to 0.0 here, because it will be changed over time in the
// `fade_transparency` function.
// Note that the transparency has no effect on the objects shadow.
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
// Mask sets a cutoff for transparency. Alpha values below are fully transparent,
// alpha values above are fully opaque.
alpha_mode: AlphaMode::Mask(0.5),
..default()
})),
Transform::from_xyz(1.0, 0.5, -1.5),
));
// Transparent unlit sphere, uses `alpha_mode: Mask(f32)`
commands.spawn((
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::srgba(0.2, 0.7, 0.1, 0.0),
alpha_mode: AlphaMode::Mask(0.5),
unlit: true,
..default()
})),
Transform::from_xyz(-1.0, 0.5, -1.5),
));
// Transparent cube, uses `alpha_mode: Blend`
commands.spawn((
Mesh3d(meshes.add(Cuboid::default())),
// Notice how there is no need to set the `alpha_mode` explicitly here.
// When converting a color to a material using `into()`, the alpha mode is
// automatically set to `Blend` if the alpha channel is anything lower than 1.0.
MeshMaterial3d(materials.add(Color::srgba(0.5, 0.5, 1.0, 0.0))),
Transform::from_xyz(0.0, 0.5, 0.0),
));
// Transparent cube, uses `alpha_mode: AlphaToCoverage`
commands.spawn((
Mesh3d(meshes.add(Cuboid::default())),
MeshMaterial3d(materials.add(StandardMaterial {
base_color: Color::srgba(0.5, 1.0, 0.5, 0.0),
alpha_mode: AlphaMode::AlphaToCoverage,
..default()
})),
Transform::from_xyz(-1.5, 0.5, 0.0),
));
// Opaque sphere
commands.spawn((
Mesh3d(meshes.add(Sphere::new(0.5).mesh().ico(3).unwrap())),
MeshMaterial3d(materials.add(Color::srgb(0.7, 0.2, 0.1))),
Transform::from_xyz(0.0, 0.5, -1.5),
));
// Light
commands.spawn((
PointLight {
shadows_enabled: true,
..default()
},
Transform::from_xyz(4.0, 8.0, 4.0),
));
// Camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(-2.0, 3.0, 5.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
}
/// Fades the alpha channel of all materials between 0 and 1 over time.
/// Each blend mode responds differently to this:
/// - [`Opaque`](AlphaMode::Opaque): Ignores alpha channel altogether, these materials stay completely opaque.
/// - [`Mask(f32)`](AlphaMode::Mask): Object appears when the alpha value goes above the mask's threshold, disappears
/// when the alpha value goes back below the threshold.
/// - [`Blend`](AlphaMode::Blend): Object fades in and out smoothly.
/// - [`AlphaToCoverage`](AlphaMode::AlphaToCoverage): Object fades in and out
/// in steps corresponding to the number of multisample antialiasing (MSAA)
/// samples in use. For example, assuming 8xMSAA, the object will be
/// completely opaque, then will be 7/8 opaque (1/8 transparent), then will be
/// 6/8 opaque, then 5/8, etc.
pub fn fade_transparency(time: Res<Time>, mut materials: ResMut<Assets<StandardMaterial>>) {
let alpha = (ops::sin(time.elapsed_seconds()) / 2.0) + 0.5;
for (_, material) in materials.iter_mut() {
material.base_color.set_alpha(alpha);
}
}