bevy/examples/ecs/component_hooks.rs
Rob Parrett 30d84519a2
Use en-us locale for typos (#16037)
# Objective

Bevy seems to want to standardize on "American English" spellings. Not
sure if this is laid out anywhere in writing, but see also #15947.

While perusing the docs for `typos`, I noticed that it has a `locale`
config option and tried it out.

## Solution

Switch to `en-us` locale in the `typos` config and run `typos -w`

## Migration Guide

The following methods or fields have been renamed from `*dependants*` to
`*dependents*`.

- `ProcessorAssetInfo::dependants`
- `ProcessorAssetInfos::add_dependant`
- `ProcessorAssetInfos::non_existent_dependants`
- `AssetInfo::dependants_waiting_on_load`
- `AssetInfo::dependants_waiting_on_recursive_dep_load`
- `AssetInfos::loader_dependants`
- `AssetInfos::remove_dependants_and_labels`
2024-10-20 18:55:17 +00:00

117 lines
4.8 KiB
Rust

//! This example illustrates the different ways you can employ component lifecycle hooks.
//!
//! Whenever possible, prefer using Bevy's change detection or Events for reacting to component changes.
//! Events generally offer better performance and more flexible integration into Bevy's systems.
//! Hooks are useful to enforce correctness but have limitations (only one hook per component,
//! less ergonomic than events).
//!
//! Here are some cases where components hooks might be necessary:
//!
//! - Maintaining indexes: If you need to keep custom data structures (like a spatial index) in
//! sync with the addition/removal of components.
//!
//! - Enforcing structural rules: When you have systems that depend on specific relationships
//! between components (like hierarchies or parent-child links) and need to maintain correctness.
use bevy::{
ecs::component::{ComponentHooks, StorageType},
prelude::*,
};
use std::collections::HashMap;
#[derive(Debug)]
/// Hooks can also be registered during component initialization by
/// using [`Component`] derive macro:
/// ```no_run
/// #[derive(Component)]
/// #[component(on_add = ..., on_insert = ..., on_replace = ..., on_remove = ...)]
/// ```
struct MyComponent(KeyCode);
impl Component for MyComponent {
const STORAGE_TYPE: StorageType = StorageType::Table;
/// Hooks can also be registered during component initialization by
/// implementing `register_component_hooks`
fn register_component_hooks(_hooks: &mut ComponentHooks) {
// Register hooks...
}
}
#[derive(Resource, Default, Debug, Deref, DerefMut)]
struct MyComponentIndex(HashMap<KeyCode, Entity>);
#[derive(Event)]
struct MyEvent;
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(Update, trigger_hooks)
.init_resource::<MyComponentIndex>()
.add_event::<MyEvent>()
.run();
}
fn setup(world: &mut World) {
// In order to register component hooks the component must:
// - not be currently in use by any entities in the world
// - not already have a hook of that kind registered
// This is to prevent overriding hooks defined in plugins and other crates as well as keeping things fast
world
.register_component_hooks::<MyComponent>()
// There are 4 component lifecycle hooks: `on_add`, `on_insert`, `on_replace` and `on_remove`
// A hook has 3 arguments:
// - a `DeferredWorld`, this allows access to resource and component data as well as `Commands`
// - the entity that triggered the hook
// - the component id of the triggering component, this is mostly used for dynamic components
//
// `on_add` will trigger when a component is inserted onto an entity without it
.on_add(|mut world, entity, component_id| {
// You can access component data from within the hook
let value = world.get::<MyComponent>(entity).unwrap().0;
println!("Component: {component_id:?} added to: {entity:?} with value {value:?}");
// Or access resources
world
.resource_mut::<MyComponentIndex>()
.insert(value, entity);
// Or send events
world.send_event(MyEvent);
})
// `on_insert` will trigger when a component is inserted onto an entity,
// regardless of whether or not it already had it and after `on_add` if it ran
.on_insert(|world, _, _| {
println!("Current Index: {:?}", world.resource::<MyComponentIndex>());
})
// `on_replace` will trigger when a component is inserted onto an entity that already had it,
// and runs before the value is replaced.
// Also triggers when a component is removed from an entity, and runs before `on_remove`
.on_replace(|mut world, entity, _| {
let value = world.get::<MyComponent>(entity).unwrap().0;
world.resource_mut::<MyComponentIndex>().remove(&value);
})
// `on_remove` will trigger when a component is removed from an entity,
// since it runs before the component is removed you can still access the component data
.on_remove(|mut world, entity, component_id| {
let value = world.get::<MyComponent>(entity).unwrap().0;
println!("Component: {component_id:?} removed from: {entity:?} with value {value:?}");
// You can also issue commands through `.commands()`
world.commands().entity(entity).despawn();
});
}
fn trigger_hooks(
mut commands: Commands,
keys: Res<ButtonInput<KeyCode>>,
index: Res<MyComponentIndex>,
) {
for (key, entity) in index.iter() {
if !keys.pressed(*key) {
commands.entity(*entity).remove::<MyComponent>();
}
}
for key in keys.get_just_pressed() {
commands.spawn(MyComponent(*key));
}
}