bevy/examples/transforms/transform.rs
Joona Aalto a795de30b4
Use impl Into<A> for Assets::add (#10878)
# Motivation

When spawning entities into a scene, it is very common to create assets
like meshes and materials and to add them via asset handles. A common
setup might look like this:

```rust
fn setup(
    mut commands: Commands,
    mut meshes: ResMut<Assets<Mesh>>,
    mut materials: ResMut<Assets<StandardMaterial>>,
) {
    commands.spawn(PbrBundle {
        mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
        material: materials.add(StandardMaterial::from(Color::RED)),
        ..default()
    });
}
```

Let's take a closer look at the part that adds the assets using `add`.

```rust
mesh: meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
material: materials.add(StandardMaterial::from(Color::RED)),
```

Here, "mesh" and "material" are both repeated three times. It's very
explicit, but I find it to be a bit verbose. In addition to being more
code to read and write, the extra characters can sometimes also lead to
the code being formatted to span multiple lines even though the core
task, adding e.g. a primitive mesh, is extremely simple.

A way to address this is by using `.into()`:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }.into()),
material: materials.add(Color::RED.into()),
```

This is fine, but from the names and the type of `meshes`, we already
know what the type should be. It's very clear that `Cube` should be
turned into a `Mesh` because of the context it's used in. `.into()` is
just seven characters, but it's so common that it quickly adds up and
gets annoying.

It would be nice if you could skip all of the conversion and let Bevy
handle it for you:

```rust
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::RED),
```

# Objective

Make adding assets more ergonomic by making `Assets::add` take an `impl
Into<A>` instead of `A`.

## Solution

`Assets::add` now takes an `impl Into<A>` instead of `A`, so e.g. this
works:

```rust
    commands.spawn(PbrBundle {
        mesh: meshes.add(shape::Cube { size: 1.0 }),
        material: materials.add(Color::RED),
        ..default()
    });
```

I also changed all examples to use this API, which increases consistency
as well because `Mesh::from` and `into` were being used arbitrarily even
in the same file. This also gets rid of some lines of code because
formatting is nicer.

---

## Changelog

- `Assets::add` now takes an `impl Into<A>` instead of `A`
- Examples don't use `T::from(K)` or `K.into()` when adding assets

## Migration Guide

Some `into` calls that worked previously might now be broken because of
the new trait bounds. You need to either remove `into` or perform the
conversion explicitly with `from`:

```rust
// Doesn't compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }.into()),

// These compile
let mesh_handle = meshes.add(shape::Cube { size: 1.0 }),
let mesh_handle = meshes.add(Mesh::from(shape::Cube { size: 1.0 })),
```

## Concerns

I believe the primary concerns might be:

1. Is this too implicit?
2. Does this increase codegen bloat?

Previously, the two APIs were using `into` or `from`, and now it's
"nothing" or `from`. You could argue that `into` is slightly more
explicit than "nothing" in cases like the earlier examples where a
`Color` gets converted to e.g. a `StandardMaterial`, but I personally
don't think `into` adds much value even in this case, and you could
still see the actual type from the asset type.

As for codegen bloat, I doubt it adds that much, but I'm not very
familiar with the details of codegen. I personally value the user-facing
code reduction and ergonomics improvements that these changes would
provide, but it might be worth checking the other effects in more
detail.

Another slight concern is migration pain; apps might have a ton of
`into` calls that would need to be removed, and it did take me a while
to do so for Bevy itself (maybe around 20-40 minutes). However, I think
the fact that there *are* so many `into` calls just highlights that the
API could be made nicer, and I'd gladly migrate my own projects for it.
2024-01-08 22:14:43 +00:00

163 lines
6 KiB
Rust

//! Shows multiple transformations of objects.
use std::f32::consts::PI;
use bevy::prelude::*;
// A struct for additional data of for a moving cube.
#[derive(Component)]
struct CubeState {
start_pos: Vec3,
move_speed: f32,
turn_speed: f32,
}
// A struct adding information to a scalable entity,
// that will be stationary at the center of the scene.
#[derive(Component)]
struct Center {
max_size: f32,
min_size: f32,
scale_factor: f32,
}
fn main() {
App::new()
.add_plugins(DefaultPlugins)
.add_systems(Startup, setup)
.add_systems(
Update,
(
move_cube,
rotate_cube,
scale_down_sphere_proportional_to_cube_travel_distance,
)
.chain(),
)
.run();
}
// Startup system to setup the scene and spawn all relevant entities.
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
// Add an object (sphere) for visualizing scaling.
commands.spawn((
PbrBundle {
mesh: meshes.add(
Mesh::try_from(shape::Icosphere {
radius: 3.0,
subdivisions: 32,
})
.unwrap(),
),
material: materials.add(Color::YELLOW),
transform: Transform::from_translation(Vec3::ZERO),
..default()
},
Center {
max_size: 1.0,
min_size: 0.1,
scale_factor: 0.05,
},
));
// Add the cube to visualize rotation and translation.
// This cube will circle around the center_sphere
// by changing its rotation each frame and moving forward.
// Define a start transform for an orbiting cube, that's away from our central object (sphere)
// and rotate it so it will be able to move around the sphere and not towards it.
let cube_spawn =
Transform::from_translation(Vec3::Z * -10.0).with_rotation(Quat::from_rotation_y(PI / 2.));
commands.spawn((
PbrBundle {
mesh: meshes.add(shape::Cube { size: 1.0 }),
material: materials.add(Color::WHITE),
transform: cube_spawn,
..default()
},
CubeState {
start_pos: cube_spawn.translation,
move_speed: 2.0,
turn_speed: 0.2,
},
));
// Spawn a camera looking at the entities to show what's happening in this example.
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(0.0, 10.0, 20.0).looking_at(Vec3::ZERO, Vec3::Y),
..default()
});
// Add a light source for better 3d visibility.
commands.spawn(PointLightBundle {
transform: Transform::from_translation(Vec3::ONE * 3.0),
..default()
});
}
// This system will move the cube forward.
fn move_cube(mut cubes: Query<(&mut Transform, &mut CubeState)>, timer: Res<Time>) {
for (mut transform, cube) in &mut cubes {
// Move the cube forward smoothly at a given move_speed.
let forward = transform.forward();
transform.translation += forward * cube.move_speed * timer.delta_seconds();
}
}
// This system will rotate the cube slightly towards the center_sphere.
// Due to the forward movement the resulting movement
// will be a circular motion around the center_sphere.
fn rotate_cube(
mut cubes: Query<(&mut Transform, &mut CubeState), Without<Center>>,
center_spheres: Query<&Transform, With<Center>>,
timer: Res<Time>,
) {
// Calculate the point to circle around. (The position of the center_sphere)
let mut center: Vec3 = Vec3::ZERO;
for sphere in &center_spheres {
center += sphere.translation;
}
// Update the rotation of the cube(s).
for (mut transform, cube) in &mut cubes {
// Calculate the rotation of the cube if it would be looking at the sphere in the center.
let look_at_sphere = transform.looking_at(center, transform.local_y());
// Interpolate between the current rotation and the fully turned rotation
// when looking a the sphere, with a given turn speed to get a smooth motion.
// With higher speed the curvature of the orbit would be smaller.
let incremental_turn_weight = cube.turn_speed * timer.delta_seconds();
let old_rotation = transform.rotation;
transform.rotation = old_rotation.lerp(look_at_sphere.rotation, incremental_turn_weight);
}
}
// This system will scale down the sphere in the center of the scene
// according to the traveling distance of the orbiting cube(s) from their start position(s).
fn scale_down_sphere_proportional_to_cube_travel_distance(
cubes: Query<(&Transform, &CubeState), Without<Center>>,
mut centers: Query<(&mut Transform, &Center)>,
) {
// First we need to calculate the length of between
// the current position of the orbiting cube and the spawn position.
let mut distances = 0.0;
for (cube_transform, cube_state) in &cubes {
distances += (cube_state.start_pos - cube_transform.translation).length();
}
// Now we use the calculated value to scale the sphere in the center accordingly.
for (mut transform, center) in &mut centers {
// Calculate the new size from the calculated distances and the centers scale_factor.
// Since we want to have the sphere at its max_size at the cubes spawn location we start by
// using the max_size as start value and subtract the distances scaled by a scaling factor.
let mut new_size: f32 = center.max_size - center.scale_factor * distances;
// The new size should also not be smaller than the centers min_size.
// Therefore the max value out of (new_size, center.min_size) is used.
new_size = new_size.max(center.min_size);
// Now scale the sphere uniformly in all directions using new_size.
// Here Vec3:splat is used to create a vector with new_size in x, y and z direction.
transform.scale = Vec3::splat(new_size);
}
}