bevy/pipelined/bevy_render2/src/lib.rs
Carter Anderson 2e79951659 Shader Imports. Decouple Mesh logic from PBR (#3137)
## Shader Imports

This adds "whole file" shader imports. These come in two flavors:

### Asset Path Imports

```rust
// /assets/shaders/custom.wgsl

#import "shaders/custom_material.wgsl"

[[stage(fragment)]]
fn fragment() -> [[location(0)]] vec4<f32> {
    return get_color();
}
```

```rust
// /assets/shaders/custom_material.wgsl

[[block]]
struct CustomMaterial {
    color: vec4<f32>;
};
[[group(1), binding(0)]]
var<uniform> material: CustomMaterial;
```

### Custom Path Imports

Enables defining custom import paths. These are intended to be used by crates to export shader functionality:

```rust
// bevy_pbr2/src/render/pbr.wgsl

#import bevy_pbr::mesh_view_bind_group
#import bevy_pbr::mesh_bind_group

[[block]]
struct StandardMaterial {
    base_color: vec4<f32>;
    emissive: vec4<f32>;
    perceptual_roughness: f32;
    metallic: f32;
    reflectance: f32;
    flags: u32;
};

/* rest of PBR fragment shader here */
```

```rust
impl Plugin for MeshRenderPlugin {
    fn build(&self, app: &mut bevy_app::App) {
        let mut shaders = app.world.get_resource_mut::<Assets<Shader>>().unwrap();
        shaders.set_untracked(
            MESH_BIND_GROUP_HANDLE,
            Shader::from_wgsl(include_str!("mesh_bind_group.wgsl"))
                .with_import_path("bevy_pbr::mesh_bind_group"),
        );
        shaders.set_untracked(
            MESH_VIEW_BIND_GROUP_HANDLE,
            Shader::from_wgsl(include_str!("mesh_view_bind_group.wgsl"))
                .with_import_path("bevy_pbr::mesh_view_bind_group"),
        );
```

By convention these should use rust-style module paths that start with the crate name. Ultimately we might enforce this convention.

Note that this feature implements _run time_ import resolution. Ultimately we should move the import logic into an asset preprocessor once Bevy gets support for that.

## Decouple Mesh Logic from PBR Logic via MeshRenderPlugin

This breaks out mesh rendering code from PBR material code, which improves the legibility of the code, decouples mesh logic from PBR logic, and opens the door for a future `MaterialPlugin<T: Material>` that handles all of the pipeline setup for arbitrary shader materials.

## Removed `RenderAsset<Shader>` in favor of extracting shaders into RenderPipelineCache

This simplifies the shader import implementation and removes the need to pass around `RenderAssets<Shader>`.

##  RenderCommands are now fallible

This allows us to cleanly handle pipelines+shaders not being ready yet. We can abort a render command early in these cases, preventing bevy from trying to bind group / do draw calls for pipelines that couldn't be bound. This could also be used in the future for things like "components not existing on entities yet". 

# Next Steps

* Investigate using Naga for "partial typed imports" (ex: `#import bevy_pbr::material::StandardMaterial`, which would import only the StandardMaterial struct)
* Implement `MaterialPlugin<T: Material>` for low-boilerplate custom material shaders
* Move shader import logic into the asset preprocessor once bevy gets support for that.

Fixes #3132
2021-11-18 03:45:02 +00:00

298 lines
11 KiB
Rust

pub mod camera;
pub mod color;
pub mod mesh;
pub mod primitives;
pub mod render_asset;
pub mod render_component;
pub mod render_graph;
pub mod render_phase;
pub mod render_resource;
pub mod renderer;
pub mod texture;
pub mod view;
pub use once_cell;
use crate::{
camera::CameraPlugin,
mesh::MeshPlugin,
render_graph::RenderGraph,
render_resource::{RenderPipelineCache, Shader, ShaderLoader},
renderer::render_system,
texture::ImagePlugin,
view::{ViewPlugin, WindowRenderPlugin},
};
use bevy_app::{App, AppLabel, Plugin};
use bevy_asset::{AddAsset, AssetServer};
use bevy_ecs::prelude::*;
use std::ops::{Deref, DerefMut};
use wgpu::Backends;
/// Contains the default Bevy rendering backend based on wgpu.
#[derive(Default)]
pub struct RenderPlugin;
/// The labels of the default App rendering stages.
#[derive(Debug, Hash, PartialEq, Eq, Clone, StageLabel)]
pub enum RenderStage {
/// Extract data from the "app world" and insert it into the "render world".
/// This step should be kept as short as possible to increase the "pipelining potential" for
/// running the next frame while rendering the current frame.
Extract,
/// Prepare render resources from the extracted data for the GPU.
Prepare,
/// Create [`BindGroups`](crate::render_resource::BindGroup) that depend on
/// [`Prepare`](RenderStage::Prepare) data and queue up draw calls to run during the
/// [`Render`](RenderStage::Render) stage.
Queue,
// TODO: This could probably be moved in favor of a system ordering abstraction in Render or Queue
/// Sort the [`RenderPhases`](crate::render_phase::RenderPhase) here.
PhaseSort,
/// Actual rendering happens here.
/// In most cases, only the render backend should insert resources here.
Render,
/// Cleanup render resources here.
Cleanup,
}
/// The Render App World. This is only available as a resource during the Extract step.
#[derive(Default)]
pub struct RenderWorld(World);
impl Deref for RenderWorld {
type Target = World;
fn deref(&self) -> &Self::Target {
&self.0
}
}
impl DerefMut for RenderWorld {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0
}
}
/// A Label for the rendering sub-app.
#[derive(Debug, Clone, Copy, Hash, PartialEq, Eq, AppLabel)]
pub struct RenderApp;
/// A "scratch" world used to avoid allocating new worlds every frame when
/// swapping out the [`RenderWorld`].
#[derive(Default)]
struct ScratchRenderWorld(World);
impl Plugin for RenderPlugin {
/// Initializes the renderer, sets up the [`RenderStage`](RenderStage) and creates the rendering sub-app.
fn build(&self, app: &mut App) {
let default_backend = if cfg!(not(target_arch = "wasm32")) {
Backends::PRIMARY
} else {
Backends::GL
};
let backends = wgpu::util::backend_bits_from_env().unwrap_or(default_backend);
let instance = wgpu::Instance::new(backends);
let surface = {
let world = app.world.cell();
let windows = world.get_resource_mut::<bevy_window::Windows>().unwrap();
let raw_handle = windows.get_primary().map(|window| unsafe {
let handle = window.raw_window_handle().get_handle();
instance.create_surface(&handle)
});
raw_handle
};
let (device, queue) = futures_lite::future::block_on(renderer::initialize_renderer(
&instance,
&wgpu::RequestAdapterOptions {
power_preference: wgpu::PowerPreference::HighPerformance,
compatible_surface: surface.as_ref(),
..Default::default()
},
&wgpu::DeviceDescriptor {
features: wgpu::Features::TEXTURE_ADAPTER_SPECIFIC_FORMAT_FEATURES,
#[cfg(not(target_arch = "wasm32"))]
limits: wgpu::Limits::default(),
#[cfg(target_arch = "wasm32")]
limits: wgpu::Limits {
..wgpu::Limits::downlevel_webgl2_defaults()
},
..Default::default()
},
));
app.insert_resource(device.clone())
.insert_resource(queue.clone())
.add_asset::<Shader>()
.init_asset_loader::<ShaderLoader>()
.init_resource::<ScratchRenderWorld>();
let render_pipeline_cache = RenderPipelineCache::new(device.clone());
let asset_server = app.world.get_resource::<AssetServer>().unwrap().clone();
let mut render_app = App::empty();
let mut extract_stage =
SystemStage::parallel().with_system(RenderPipelineCache::extract_shaders);
// don't apply buffers when the stage finishes running
// extract stage runs on the app world, but the buffers are applied to the render world
extract_stage.set_apply_buffers(false);
render_app
.add_stage(RenderStage::Extract, extract_stage)
.add_stage(RenderStage::Prepare, SystemStage::parallel())
.add_stage(RenderStage::Queue, SystemStage::parallel())
.add_stage(RenderStage::PhaseSort, SystemStage::parallel())
.add_stage(
RenderStage::Render,
SystemStage::parallel()
.with_system(RenderPipelineCache::process_pipeline_queue_system)
.with_system(render_system.exclusive_system().at_end()),
)
.add_stage(RenderStage::Cleanup, SystemStage::parallel())
.insert_resource(instance)
.insert_resource(device)
.insert_resource(queue)
.insert_resource(render_pipeline_cache)
.insert_resource(asset_server)
.init_resource::<RenderGraph>();
app.add_sub_app(RenderApp, render_app, move |app_world, render_app| {
#[cfg(feature = "trace")]
let render_span = bevy_utils::tracing::info_span!("renderer subapp");
#[cfg(feature = "trace")]
let _render_guard = render_span.enter();
{
#[cfg(feature = "trace")]
let stage_span =
bevy_utils::tracing::info_span!("stage", name = "reserve_and_flush");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// reserve all existing app entities for use in render_app
// they can only be spawned using `get_or_spawn()`
let meta_len = app_world.entities().meta.len();
render_app
.world
.entities()
.reserve_entities(meta_len as u32);
// flushing as "invalid" ensures that app world entities aren't added as "empty archetype" entities by default
// these entities cannot be accessed without spawning directly onto them
// this _only_ works as expected because clear_entities() is called at the end of every frame.
render_app.world.entities_mut().flush_as_invalid();
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "extract");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// extract
extract(app_world, render_app);
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "prepare");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// prepare
let prepare = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::Prepare)
.unwrap();
prepare.run(&mut render_app.world);
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "queue");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// queue
let queue = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::Queue)
.unwrap();
queue.run(&mut render_app.world);
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "sort");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// phase sort
let phase_sort = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::PhaseSort)
.unwrap();
phase_sort.run(&mut render_app.world);
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "render");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// render
let render = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::Render)
.unwrap();
render.run(&mut render_app.world);
}
{
#[cfg(feature = "trace")]
let stage_span = bevy_utils::tracing::info_span!("stage", name = "cleanup");
#[cfg(feature = "trace")]
let _stage_guard = stage_span.enter();
// cleanup
let cleanup = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::Cleanup)
.unwrap();
cleanup.run(&mut render_app.world);
render_app.world.clear_entities();
}
});
app.add_plugin(WindowRenderPlugin)
.add_plugin(CameraPlugin)
.add_plugin(ViewPlugin)
.add_plugin(MeshPlugin)
.add_plugin(ImagePlugin);
}
}
/// Executes the [`Extract`](RenderStage::Extract) stage of the renderer.
/// This updates the render world with the extracted ECS data of the current frame.
fn extract(app_world: &mut World, render_app: &mut App) {
let extract = render_app
.schedule
.get_stage_mut::<SystemStage>(&RenderStage::Extract)
.unwrap();
// temporarily add the render world to the app world as a resource
let scratch_world = app_world.remove_resource::<ScratchRenderWorld>().unwrap();
let render_world = std::mem::replace(&mut render_app.world, scratch_world.0);
app_world.insert_resource(RenderWorld(render_world));
extract.run(app_world);
// add the render world back to the render app
let render_world = app_world.remove_resource::<RenderWorld>().unwrap();
let scratch_world = std::mem::replace(&mut render_app.world, render_world.0);
app_world.insert_resource(ScratchRenderWorld(scratch_world));
extract.apply_buffers(&mut render_app.world);
}