mirror of
https://github.com/bevyengine/bevy
synced 2024-11-26 06:30:19 +00:00
599e5e4e76
# Objective - As part of the migration process we need to a) see the end effect of the migration on user ergonomics b) check for serious perf regressions c) actually migrate the code - To accomplish this, I'm going to attempt to migrate all of the remaining user-facing usages of `LegacyColor` in one PR, being careful to keep a clean commit history. - Fixes #12056. ## Solution I've chosen to use the polymorphic `Color` type as our standard user-facing API. - [x] Migrate `bevy_gizmos`. - [x] Take `impl Into<Color>` in all `bevy_gizmos` APIs - [x] Migrate sprites - [x] Migrate UI - [x] Migrate `ColorMaterial` - [x] Migrate `MaterialMesh2D` - [x] Migrate fog - [x] Migrate lights - [x] Migrate StandardMaterial - [x] Migrate wireframes - [x] Migrate clear color - [x] Migrate text - [x] Migrate gltf loader - [x] Register color types for reflection - [x] Remove `LegacyColor` - [x] Make sure CI passes Incidental improvements to ease migration: - added `Color::srgba_u8`, `Color::srgba_from_array` and friends - added `set_alpha`, `is_fully_transparent` and `is_fully_opaque` to the `Alpha` trait - add and immediately deprecate (lol) `Color::rgb` and friends in favor of more explicit and consistent `Color::srgb` - standardized on white and black for most example text colors - added vector field traits to `LinearRgba`: ~~`Add`, `Sub`, `AddAssign`, `SubAssign`,~~ `Mul<f32>` and `Div<f32>`. Multiplications and divisions do not scale alpha. `Add` and `Sub` have been cut from this PR. - added `LinearRgba` and `Srgba` `RED/GREEN/BLUE` - added `LinearRgba_to_f32_array` and `LinearRgba::to_u32` ## Migration Guide Bevy's color types have changed! Wherever you used a `bevy::render::Color`, a `bevy::color::Color` is used instead. These are quite similar! Both are enums storing a color in a specific color space (or to be more precise, using a specific color model). However, each of the different color models now has its own type. TODO... - `Color::rgba`, `Color::rgb`, `Color::rbga_u8`, `Color::rgb_u8`, `Color::rgb_from_array` are now `Color::srgba`, `Color::srgb`, `Color::srgba_u8`, `Color::srgb_u8` and `Color::srgb_from_array`. - `Color::set_a` and `Color::a` is now `Color::set_alpha` and `Color::alpha`. These are part of the `Alpha` trait in `bevy_color`. - `Color::is_fully_transparent` is now part of the `Alpha` trait in `bevy_color` - `Color::r`, `Color::set_r`, `Color::with_r` and the equivalents for `g`, `b` `h`, `s` and `l` have been removed due to causing silent relatively expensive conversions. Convert your `Color` into the desired color space, perform your operations there, and then convert it back into a polymorphic `Color` enum. - `Color::hex` is now `Srgba::hex`. Call `.into` or construct a `Color::Srgba` variant manually to convert it. - `WireframeMaterial`, `ExtractedUiNode`, `ExtractedDirectionalLight`, `ExtractedPointLight`, `ExtractedSpotLight` and `ExtractedSprite` now store a `LinearRgba`, rather than a polymorphic `Color` - `Color::rgb_linear` and `Color::rgba_linear` are now `Color::linear_rgb` and `Color::linear_rgba` - The various CSS color constants are no longer stored directly on `Color`. Instead, they're defined in the `Srgba` color space, and accessed via `bevy::color::palettes::css`. Call `.into()` on them to convert them into a `Color` for quick debugging use, and consider using the much prettier `tailwind` palette for prototyping. - The `LIME_GREEN` color has been renamed to `LIMEGREEN` to comply with the standard naming. - Vector field arithmetic operations on `Color` (add, subtract, multiply and divide by a f32) have been removed. Instead, convert your colors into `LinearRgba` space, and perform your operations explicitly there. This is particularly relevant when working with emissive or HDR colors, whose color channel values are routinely outside of the ordinary 0 to 1 range. - `Color::as_linear_rgba_f32` has been removed. Call `LinearRgba::to_f32_array` instead, converting if needed. - `Color::as_linear_rgba_u32` has been removed. Call `LinearRgba::to_u32` instead, converting if needed. - Several other color conversion methods to transform LCH or HSL colors into float arrays or `Vec` types have been removed. Please reimplement these externally or open a PR to re-add them if you found them particularly useful. - Various methods on `Color` such as `rgb` or `hsl` to convert the color into a specific color space have been removed. Convert into `LinearRgba`, then to the color space of your choice. - Various implicitly-converting color value methods on `Color` such as `r`, `g`, `b` or `h` have been removed. Please convert it into the color space of your choice, then check these properties. - `Color` no longer implements `AsBindGroup`. Store a `LinearRgba` internally instead to avoid conversion costs. --------- Co-authored-by: Alice Cecile <alice.i.cecil@gmail.com> Co-authored-by: Afonso Lage <lage.afonso@gmail.com> Co-authored-by: Rob Parrett <robparrett@gmail.com> Co-authored-by: Zachary Harrold <zac@harrold.com.au>
143 lines
3.9 KiB
Rust
143 lines
3.9 KiB
Rust
//! Shows how to render UI to a texture. Useful for displaying UI in 3D space.
|
|
|
|
use std::f32::consts::PI;
|
|
|
|
use bevy::{
|
|
color::palettes::css::GOLD,
|
|
prelude::*,
|
|
render::{
|
|
camera::RenderTarget,
|
|
render_resource::{
|
|
Extent3d, TextureDescriptor, TextureDimension, TextureFormat, TextureUsages,
|
|
},
|
|
},
|
|
};
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins(DefaultPlugins)
|
|
.add_systems(Startup, setup)
|
|
.add_systems(Update, rotator_system)
|
|
.run();
|
|
}
|
|
|
|
// Marks the cube, to which the UI texture is applied.
|
|
#[derive(Component)]
|
|
struct Cube;
|
|
|
|
fn setup(
|
|
mut commands: Commands,
|
|
mut meshes: ResMut<Assets<Mesh>>,
|
|
mut materials: ResMut<Assets<StandardMaterial>>,
|
|
mut images: ResMut<Assets<Image>>,
|
|
) {
|
|
let size = Extent3d {
|
|
width: 512,
|
|
height: 512,
|
|
..default()
|
|
};
|
|
|
|
// This is the texture that will be rendered to.
|
|
let mut image = Image {
|
|
texture_descriptor: TextureDescriptor {
|
|
label: None,
|
|
size,
|
|
dimension: TextureDimension::D2,
|
|
format: TextureFormat::Bgra8UnormSrgb,
|
|
mip_level_count: 1,
|
|
sample_count: 1,
|
|
usage: TextureUsages::TEXTURE_BINDING
|
|
| TextureUsages::COPY_DST
|
|
| TextureUsages::RENDER_ATTACHMENT,
|
|
view_formats: &[],
|
|
},
|
|
..default()
|
|
};
|
|
|
|
// fill image.data with zeroes
|
|
image.resize(size);
|
|
|
|
let image_handle = images.add(image);
|
|
|
|
// Light
|
|
commands.spawn(DirectionalLightBundle::default());
|
|
|
|
let texture_camera = commands
|
|
.spawn(Camera2dBundle {
|
|
camera: Camera {
|
|
// render before the "main pass" camera
|
|
order: -1,
|
|
target: RenderTarget::Image(image_handle.clone()),
|
|
..default()
|
|
},
|
|
..default()
|
|
})
|
|
.id();
|
|
|
|
commands
|
|
.spawn((
|
|
NodeBundle {
|
|
style: Style {
|
|
// Cover the whole image
|
|
width: Val::Percent(100.),
|
|
height: Val::Percent(100.),
|
|
flex_direction: FlexDirection::Column,
|
|
justify_content: JustifyContent::Center,
|
|
align_items: AlignItems::Center,
|
|
..default()
|
|
},
|
|
background_color: GOLD.into(),
|
|
..default()
|
|
},
|
|
TargetCamera(texture_camera),
|
|
))
|
|
.with_children(|parent| {
|
|
parent.spawn(TextBundle::from_section(
|
|
"This is a cube",
|
|
TextStyle {
|
|
font_size: 40.0,
|
|
color: Color::BLACK,
|
|
..default()
|
|
},
|
|
));
|
|
});
|
|
|
|
let cube_size = 4.0;
|
|
let cube_handle = meshes.add(Cuboid::new(cube_size, cube_size, cube_size));
|
|
|
|
// This material has the texture that has been rendered.
|
|
let material_handle = materials.add(StandardMaterial {
|
|
base_color_texture: Some(image_handle),
|
|
reflectance: 0.02,
|
|
unlit: false,
|
|
|
|
..default()
|
|
});
|
|
|
|
// Cube with material containing the rendered UI texture.
|
|
commands.spawn((
|
|
PbrBundle {
|
|
mesh: cube_handle,
|
|
material: material_handle,
|
|
transform: Transform::from_xyz(0.0, 0.0, 1.5)
|
|
.with_rotation(Quat::from_rotation_x(-PI / 5.0)),
|
|
..default()
|
|
},
|
|
Cube,
|
|
));
|
|
|
|
// The main pass camera.
|
|
commands.spawn(Camera3dBundle {
|
|
transform: Transform::from_xyz(0.0, 0.0, 15.0).looking_at(Vec3::ZERO, Vec3::Y),
|
|
..default()
|
|
});
|
|
}
|
|
|
|
const ROTATION_SPEED: f32 = 0.5;
|
|
|
|
fn rotator_system(time: Res<Time>, mut query: Query<&mut Transform, With<Cube>>) {
|
|
for mut transform in &mut query {
|
|
transform.rotate_x(1.0 * time.delta_seconds() * ROTATION_SPEED);
|
|
transform.rotate_y(0.7 * time.delta_seconds() * ROTATION_SPEED);
|
|
}
|
|
}
|