bevy/examples/reflection/function_reflection.rs
Gino Valente 276dd04001
bevy_reflect: Function reflection (#13152)
# Objective

We're able to reflect types sooooooo... why not functions?

The goal of this PR is to make functions callable within a dynamic
context, where type information is not readily available at compile
time.

For example, if we have a function:

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}
```

And two `Reflect` values we've already validated are `i32` types:

```rust
let left: Box<dyn Reflect> = Box::new(2_i32);
let right: Box<dyn Reflect> = Box::new(2_i32);
```

We should be able to call `add` with these values:

```rust
// ?????
let result: Box<dyn Reflect> = add.call_dynamic(left, right);
```

And ideally this wouldn't just work for functions, but methods and
closures too!

Right now, users have two options:

1. Manually parse the reflected data and call the function themselves
2. Rely on registered type data to handle the conversions for them

For a small function like `add`, this isn't too bad. But what about for
more complex functions? What about for many functions?

At worst, this process is error-prone. At best, it's simply tedious.

And this is assuming we know the function at compile time. What if we
want to accept a function dynamically and call it with our own
arguments?

It would be much nicer if `bevy_reflect` could alleviate some of the
problems here.

## Solution

Added function reflection!

This adds a `DynamicFunction` type to wrap a function dynamically. This
can be called with an `ArgList`, which is a dynamic list of
`Reflect`-containing `Arg` arguments. It returns a `FunctionResult`
which indicates whether or not the function call succeeded, returning a
`Reflect`-containing `Return` type if it did succeed.

Many functions can be converted into this `DynamicFunction` type thanks
to the `IntoFunction` trait.

Taking our previous `add` example, this might look something like
(explicit types added for readability):

```rust
fn add(left: i32, right: i32) -> i32 {
  left + right
}

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

And it also works on closures:

```rust
let add = |left: i32, right: i32| left + right;

let mut function: DynamicFunction = add.into_function();
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
let result: Return = function.call(args).unwrap();
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

As well as methods:

```rust
#[derive(Reflect)]
struct Foo(i32);

impl Foo {
  fn add(&mut self, value: i32) {
    self.0 += value;
  }
}

let mut foo = Foo(2);

let mut function: DynamicFunction = Foo::add.into_function();
let args: ArgList = ArgList::new().push_mut(&mut foo).push_owned(2_i32);
function.call(args).unwrap();
assert_eq!(foo.0, 4);
```

### Limitations

While this does cover many functions, it is far from a perfect system
and has quite a few limitations. Here are a few of the limitations when
using `IntoFunction`:

1. The lifetime of the return value is only tied to the lifetime of the
first argument (useful for methods). This means you can't have a
function like `(a: i32, b: &i32) -> &i32` without creating the
`DynamicFunction` manually.
2. Only 15 arguments are currently supported. If the first argument is a
(mutable) reference, this number increases to 16.
3. Manual implementations of `Reflect` will need to implement the new
`FromArg`, `GetOwnership`, and `IntoReturn` traits in order to be used
as arguments/return types.

And some limitations of `DynamicFunction` itself:

1. All arguments share the same lifetime, or rather, they will shrink to
the shortest lifetime.
2. Closures that capture their environment may need to have their
`DynamicFunction` dropped before accessing those variables again (there
is a `DynamicFunction::call_once` to make this a bit easier)
3. All arguments and return types must implement `Reflect`. While not a
big surprise coming from `bevy_reflect`, this implementation could
actually still work by swapping `Reflect` out with `Any`. Of course,
that makes working with the arguments and return values a bit harder.
4. Generic functions are not supported (unless they have been manually
monomorphized)

And general, reflection gotchas:

1. `&str` does not implement `Reflect`. Rather, `&'static str`
implements `Reflect` (the same is true for `&Path` and similar types).
This means that `&'static str` is considered an "owned" value for the
sake of generating arguments. Additionally, arguments and return types
containing `&str` will assume it's `&'static str`, which is almost never
the desired behavior. In these cases, the only solution (I believe) is
to use `&String` instead.

### Followup Work

This PR is the first of two PRs I intend to work on. The second PR will
aim to integrate this new function reflection system into the existing
reflection traits and `TypeInfo`. The goal would be to register and call
a reflected type's methods dynamically.

I chose not to do that in this PR since the diff is already quite large.
I also want the discussion for both PRs to be focused on their own
implementation.

Another followup I'd like to do is investigate allowing common container
types as a return type, such as `Option<&[mut] T>` and `Result<&[mut] T,
E>`. This would allow even more functions to opt into this system. I
chose to not include it in this one, though, for the same reasoning as
previously mentioned.

### Alternatives

One alternative I had considered was adding a macro to convert any
function into a reflection-based counterpart. The idea would be that a
struct that wraps the function would be created and users could specify
which arguments and return values should be `Reflect`. It could then be
called via a new `Function` trait.

I think that could still work, but it will be a fair bit more involved,
requiring some slightly more complex parsing. And it of course is a bit
more work for the user, since they need to create the type via macro
invocation.

It also makes registering these functions onto a type a bit more
complicated (depending on how it's implemented).

For now, I think this is a fairly simple, yet powerful solution that
provides the least amount of friction for users.

---

## Showcase

Bevy now adds support for storing and calling functions dynamically
using reflection!

```rust
// 1. Take a standard Rust function
fn add(left: i32, right: i32) -> i32 {
  left + right
}

// 2. Convert it into a type-erased `DynamicFunction` using the `IntoFunction` trait
let mut function: DynamicFunction = add.into_function();
// 3. Define your arguments from reflected values
let args: ArgList = ArgList::new().push_owned(2_i32).push_owned(2_i32);
// 4. Call the function with your arguments
let result: Return = function.call(args).unwrap();
// 5. Extract the return value
let value: Box<dyn Reflect> = result.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
```

## Changelog

#### TL;DR

- Added support for function reflection
- Added a new `Function Reflection` example:
ba727898f2/examples/reflection/function_reflection.rs (L1-L157)

#### Details

Added the following items:

- `ArgError` enum
- `ArgId` enum
- `ArgInfo` struct
- `ArgList` struct
- `Arg` enum
- `DynamicFunction` struct
- `FromArg` trait (derived with `derive(Reflect)`)
- `FunctionError` enum
- `FunctionInfo` struct
- `FunctionResult` alias
- `GetOwnership` trait (derived with `derive(Reflect)`)
- `IntoFunction` trait (with blanket implementation)
- `IntoReturn` trait (derived with `derive(Reflect)`)
- `Ownership` enum
- `ReturnInfo` struct
- `Return` enum

---------

Co-authored-by: Periwink <charlesbour@gmail.com>
2024-07-01 13:49:08 +00:00

157 lines
7.3 KiB
Rust

//! This example demonstrates how functions can be called dynamically using reflection.
//!
//! Function reflection is useful for calling regular Rust functions in a dynamic context,
//! where the types of arguments, return values, and even the function itself aren't known at compile time.
//!
//! This can be used for things like adding scripting support to your application,
//! processing deserialized reflection data, or even just storing type-erased versions of your functions.
use bevy::reflect::func::args::ArgInfo;
use bevy::reflect::func::{
ArgList, DynamicFunction, FunctionInfo, IntoFunction, Return, ReturnInfo,
};
use bevy::reflect::Reflect;
// Note that the `dbg!` invocations are used purely for demonstration purposes
// and are not strictly necessary for the example to work.
fn main() {
// There are times when it may be helpful to store a function away for later.
// In Rust, we can do this by storing either a function pointer or a function trait object.
// For example, say we wanted to store the following function:
fn add(left: i32, right: i32) -> i32 {
left + right
}
// We could store it as either of the following:
let fn_pointer: fn(i32, i32) -> i32 = add;
let fn_trait_object: Box<dyn Fn(i32, i32) -> i32> = Box::new(add);
// And we can call them like so:
let result = fn_pointer(2, 2);
assert_eq!(result, 4);
let result = fn_trait_object(2, 2);
assert_eq!(result, 4);
// However, you'll notice that we have to know the types of the arguments and return value at compile time.
// This means there's not really a way to store or call these functions dynamically at runtime.
// Luckily, Bevy's reflection crate comes with a set of tools for doing just that!
// We do this by first converting our function into the reflection-based `DynamicFunction` type
// using the `IntoFunction` trait.
let mut function: DynamicFunction = dbg!(add.into_function());
// This time, you'll notice that `DynamicFunction` doesn't take any information about the function's arguments or return value.
// This is because `DynamicFunction` checks the types of the arguments and return value at runtime.
// Now we can generate a list of arguments:
let args: ArgList = dbg!(ArgList::new().push_owned(2_i32).push_owned(2_i32));
// And finally, we can call the function.
// This returns a `Result` indicating whether the function was called successfully.
// For now, we'll just unwrap it to get our `Return` value,
// which is an enum containing the function's return value.
let return_value: Return = dbg!(function.call(args).unwrap());
// The `Return` value can be pattern matched or unwrapped to get the underlying reflection data.
// For the sake of brevity, we'll just unwrap it here and downcast it to the expected type of `i32`.
let value: Box<dyn Reflect> = return_value.unwrap_owned();
assert_eq!(value.take::<i32>().unwrap(), 4);
// The same can also be done for closures.
let mut count = 0;
let increment = |amount: i32| {
count += amount;
};
let increment_function: DynamicFunction = dbg!(increment.into_function());
let args = dbg!(ArgList::new().push_owned(5_i32));
// `DynamicFunction`s containing closures that capture their environment like this one
// may need to be dropped before those captured variables may be used again.
// This can be done manually with `drop` or by using the `Function::call_once` method.
dbg!(increment_function.call_once(args).unwrap());
assert_eq!(count, 5);
// As stated before, this works for many kinds of simple functions.
// Functions with non-reflectable arguments or return values may not be able to be converted.
// Generic functions are also not supported.
// Additionally, the lifetime of the return value is tied to the lifetime of the first argument.
// However, this means that many methods (i.e. functions with a `self` parameter) are also supported:
#[derive(Reflect, Default)]
struct Data {
value: String,
}
impl Data {
fn set_value(&mut self, value: String) {
self.value = value;
}
// Note that only `&'static str` implements `Reflect`.
// To get around this limitation we can use `&String` instead.
fn get_value(&self) -> &String {
&self.value
}
}
let mut data = Data::default();
let mut set_value = dbg!(Data::set_value.into_function());
let args = dbg!(ArgList::new().push_mut(&mut data)).push_owned(String::from("Hello, world!"));
dbg!(set_value.call(args).unwrap());
assert_eq!(data.value, "Hello, world!");
let mut get_value = dbg!(Data::get_value.into_function());
let args = dbg!(ArgList::new().push_ref(&data));
let return_value = dbg!(get_value.call(args).unwrap());
let value: &dyn Reflect = return_value.unwrap_ref();
assert_eq!(value.downcast_ref::<String>().unwrap(), "Hello, world!");
// Lastly, for more complex use cases, you can always create a custom `DynamicFunction` manually.
// This is useful for functions that can't be converted via the `IntoFunction` trait.
// For example, this function doesn't implement `IntoFunction` due to the fact that
// the lifetime of the return value is not tied to the lifetime of the first argument.
fn get_or_insert(value: i32, container: &mut Option<i32>) -> &i32 {
if container.is_none() {
*container = Some(value);
}
container.as_ref().unwrap()
}
let mut get_or_insert_function = dbg!(DynamicFunction::new(
|mut args, info| {
let container_info = &info.args()[1];
let value_info = &info.args()[0];
// The `ArgList` contains the arguments in the order they were pushed.
// Therefore, we need to pop them in reverse order.
let container = args
.pop()
.unwrap()
.take_mut::<Option<i32>>(container_info)
.unwrap();
let value = args.pop().unwrap().take_owned::<i32>(value_info).unwrap();
Ok(Return::Ref(get_or_insert(value, container)))
},
FunctionInfo::new()
// We can optionally provide a name for the function
.with_name("get_or_insert")
// Since our function takes arguments, we MUST provide that argument information.
// The arguments should be provided in the order they are defined in the function.
// This is used to validate any arguments given at runtime.
.with_args(vec![
ArgInfo::new::<i32>(0).with_name("value"),
ArgInfo::new::<&mut Option<i32>>(1).with_name("container"),
])
// We can optionally provide return information as well.
.with_return_info(ReturnInfo::new::<&i32>()),
));
let mut container: Option<i32> = None;
let args = dbg!(ArgList::new().push_owned(5_i32).push_mut(&mut container));
let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
assert_eq!(value.downcast_ref::<i32>(), Some(&5));
let args = dbg!(ArgList::new().push_owned(500_i32).push_mut(&mut container));
let value = dbg!(get_or_insert_function.call(args).unwrap()).unwrap_ref();
assert_eq!(value.downcast_ref::<i32>(), Some(&5));
}