mirror of
https://github.com/bevyengine/bevy
synced 2024-11-23 21:23:05 +00:00
5876352206
# Objective The `AssetReader` trait allows customizing the behavior of fetching bytes for an `AssetPath`, and expects implementors to return `dyn AsyncRead + AsyncSeek`. This gives implementors of `AssetLoader` great flexibility to tightly integrate their asset loading behavior with the asynchronous task system. However, almost all implementors of `AssetLoader` don't use the async functionality at all, and just call `AsyncReadExt::read_to_end(&mut Vec<u8>)`. This is incredibly inefficient, as this method repeatedly calls `poll_read` on the trait object, filling the vector 32 bytes at a time. At my work we have assets that are hundreds of megabytes which makes this a meaningful overhead. ## Solution Turn the `Reader` type alias into an actual trait, with a provided method `read_to_end`. This provided method should be more efficient than the existing extension method, as the compiler will know the underlying type of `Reader` when generating this function, which removes the repeated dynamic dispatches and allows the compiler to make further optimizations after inlining. Individual implementors are able to override the provided implementation -- for simple asset readers that just copy bytes from one buffer to another, this allows removing a large amount of overhead from the provided implementation. Now that `Reader` is an actual trait, I also improved the ergonomics for implementing `AssetReader`. Currently, implementors are expected to box their reader and return it as a trait object, which adds unnecessary boilerplate to implementations. This PR changes that trait method to return a pseudo trait alias, which allows implementors to return `impl Reader` instead of `Box<dyn Reader>`. Now, the boilerplate for boxing occurs in `ErasedAssetReader`. ## Testing I made identical changes to my company's fork of bevy. Our app, which makes heavy use of `read_to_end` for asset loading, still worked properly after this. I am not aware if we have a more systematic way of testing asset loading for correctness. --- ## Migration Guide The trait method `bevy_asset::io::AssetReader::read` (and `read_meta`) now return an opaque type instead of a boxed trait object. Implementors of these methods should change the type signatures appropriately ```rust impl AssetReader for MyReader { // Before async fn read<'a>(&'a self, path: &'a Path) -> Result<Box<Reader<'a>>, AssetReaderError> { let reader = // construct a reader Box::new(reader) as Box<Reader<'a>> } // After async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> { // create a reader } } ``` `bevy::asset::io::Reader` is now a trait, rather than a type alias for a trait object. Implementors of `AssetLoader::load` will need to adjust the method signature accordingly ```rust impl AssetLoader for MyLoader { async fn load<'a>( &'a self, // Before: reader: &'a mut bevy::asset::io::Reader, // After: reader: &'a mut dyn bevy::asset::io::Reader, _: &'a Self::Settings, load_context: &'a mut LoadContext<'_>, ) -> Result<Self::Asset, Self::Error> { } ``` Additionally, implementors of `AssetReader` that return a type implementing `futures_io::AsyncRead` and `AsyncSeek` might need to explicitly implement `bevy::asset::io::Reader` for that type. ```rust impl bevy::asset::io::Reader for MyAsyncReadAndSeek {} ```
68 lines
2.1 KiB
Rust
68 lines
2.1 KiB
Rust
//! Implements a custom asset io loader.
|
|
//! An [`AssetReader`] is what the asset server uses to read the raw bytes of assets.
|
|
//! It does not know anything about the asset formats, only how to talk to the underlying storage.
|
|
|
|
use bevy::{
|
|
asset::io::{
|
|
AssetReader, AssetReaderError, AssetSource, AssetSourceId, ErasedAssetReader, PathStream,
|
|
Reader,
|
|
},
|
|
prelude::*,
|
|
};
|
|
use std::path::Path;
|
|
|
|
/// A custom asset reader implementation that wraps a given asset reader implementation
|
|
struct CustomAssetReader(Box<dyn ErasedAssetReader>);
|
|
|
|
impl AssetReader for CustomAssetReader {
|
|
async fn read<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
|
|
info!("Reading {:?}", path);
|
|
self.0.read(path).await
|
|
}
|
|
async fn read_meta<'a>(&'a self, path: &'a Path) -> Result<impl Reader + 'a, AssetReaderError> {
|
|
self.0.read_meta(path).await
|
|
}
|
|
|
|
async fn read_directory<'a>(
|
|
&'a self,
|
|
path: &'a Path,
|
|
) -> Result<Box<PathStream>, AssetReaderError> {
|
|
self.0.read_directory(path).await
|
|
}
|
|
|
|
async fn is_directory<'a>(&'a self, path: &'a Path) -> Result<bool, AssetReaderError> {
|
|
self.0.is_directory(path).await
|
|
}
|
|
}
|
|
|
|
/// A plugins that registers our new asset reader
|
|
struct CustomAssetReaderPlugin;
|
|
|
|
impl Plugin for CustomAssetReaderPlugin {
|
|
fn build(&self, app: &mut App) {
|
|
app.register_asset_source(
|
|
AssetSourceId::Default,
|
|
AssetSource::build().with_reader(|| {
|
|
Box::new(CustomAssetReader(
|
|
// This is the default reader for the current platform
|
|
AssetSource::get_default_reader("assets".to_string())(),
|
|
))
|
|
}),
|
|
);
|
|
}
|
|
}
|
|
|
|
fn main() {
|
|
App::new()
|
|
.add_plugins((CustomAssetReaderPlugin, DefaultPlugins))
|
|
.add_systems(Startup, setup)
|
|
.run();
|
|
}
|
|
|
|
fn setup(mut commands: Commands, asset_server: Res<AssetServer>) {
|
|
commands.spawn(Camera2dBundle::default());
|
|
commands.spawn(SpriteBundle {
|
|
texture: asset_server.load("branding/icon.png"),
|
|
..default()
|
|
});
|
|
}
|