bevy/examples/stress_tests/many_cubes.rs
Carter Anderson 1bb751cb8d Plugins own their settings. Rework PluginGroup trait. (#6336)
# Objective

Fixes #5884 #2879
Alternative to #2988 #5885 #2886

"Immutable" Plugin settings are currently represented as normal ECS resources, which are read as part of plugin init. This presents a number of problems:

1. If a user inserts the plugin settings resource after the plugin is initialized, it will be silently ignored (and use the defaults instead)
2. Users can modify the plugin settings resource after the plugin has been initialized. This creates a false sense of control over settings that can no longer be changed.

(1) and (2) are especially problematic and confusing for the `WindowDescriptor` resource, but this is a general problem.

## Solution

Immutable Plugin settings now live on each Plugin struct (ex: `WindowPlugin`). PluginGroups have been reworked to support overriding plugin values. This also removes the need for the `add_plugins_with` api, as the `add_plugins` api can use the builder pattern directly. Settings that can be used at runtime continue to be represented as ECS resources.

Plugins are now configured like this:

```rust
app.add_plugin(AssetPlugin {
  watch_for_changes: true,
  ..default()
})
```

PluginGroups are now configured like this:

```rust
app.add_plugins(DefaultPlugins
  .set(AssetPlugin {
    watch_for_changes: true,
    ..default()
  })
)
```

This is an alternative to #2988, which is similar. But I personally prefer this solution for a couple of reasons:
* ~~#2988 doesn't solve (1)~~ #2988 does solve (1) and will panic in that case. I was wrong!
* This PR directly ties plugin settings to Plugin types in a 1:1 relationship, rather than a loose "setup resource" <-> plugin coupling (where the setup resource is consumed by the first plugin that uses it).
* I'm not a huge fan of overloading the ECS resource concept and implementation for something that has very different use cases and constraints.

## Changelog

- PluginGroups can now be configured directly using the builder pattern. Individual plugin values can be overridden by using `plugin_group.set(SomePlugin {})`, which enables overriding default plugin values.  
- `WindowDescriptor` plugin settings have been moved to `WindowPlugin` and `AssetServerSettings` have been moved to `AssetPlugin`
- `app.add_plugins_with` has been replaced by using `add_plugins` with the builder pattern.

## Migration Guide

The `WindowDescriptor` settings have been moved from a resource to `WindowPlugin::window`:

```rust
// Old (Bevy 0.8)
app
  .insert_resource(WindowDescriptor {
    width: 400.0,
    ..default()
  })
  .add_plugins(DefaultPlugins)

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(WindowPlugin {
  window: WindowDescriptor {
    width: 400.0,
    ..default()
  },
  ..default()
}))
```


The `AssetServerSettings` resource has been removed in favor of direct `AssetPlugin` configuration:

```rust
// Old (Bevy 0.8)
app
  .insert_resource(AssetServerSettings {
    watch_for_changes: true,
    ..default()
  })
  .add_plugins(DefaultPlugins)

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.set(AssetPlugin {
  watch_for_changes: true,
  ..default()
}))
```

`add_plugins_with` has been replaced by `add_plugins` in combination with the builder pattern:

```rust
// Old (Bevy 0.8)
app.add_plugins_with(DefaultPlugins, |group| group.disable::<AssetPlugin>());

// New (Bevy 0.9)
app.add_plugins(DefaultPlugins.build().disable::<AssetPlugin>());
```
2022-10-24 21:20:33 +00:00

192 lines
6.9 KiB
Rust

//! Simple benchmark to test per-entity draw overhead.
//!
//! To measure performance realistically, be sure to run this in release mode.
//! `cargo run --example many_cubes --release`
//!
//! By default, this arranges the meshes in a cubical pattern, where the number of visible meshes
//! varies with the viewing angle. You can choose to run the demo with a spherical pattern that
//! distributes the meshes evenly.
//!
//! To start the demo using the spherical layout run
//! `cargo run --example many_cubes --release sphere`
use std::f64::consts::PI;
use bevy::{
diagnostic::{FrameTimeDiagnosticsPlugin, LogDiagnosticsPlugin},
math::{DVec2, DVec3},
prelude::*,
window::PresentMode,
};
fn main() {
App::new()
.add_plugins(DefaultPlugins.set(WindowPlugin {
window: WindowDescriptor {
present_mode: PresentMode::AutoNoVsync,
..default()
},
..default()
}))
.add_plugin(FrameTimeDiagnosticsPlugin::default())
.add_plugin(LogDiagnosticsPlugin::default())
.add_startup_system(setup)
.add_system(move_camera)
.add_system(print_mesh_count)
.run();
}
fn setup(
mut commands: Commands,
mut meshes: ResMut<Assets<Mesh>>,
mut materials: ResMut<Assets<StandardMaterial>>,
) {
warn!(include_str!("warning_string.txt"));
const WIDTH: usize = 200;
const HEIGHT: usize = 200;
let mesh = meshes.add(Mesh::from(shape::Cube { size: 1.0 }));
let material = materials.add(StandardMaterial {
base_color: Color::PINK,
..default()
});
match std::env::args().nth(1).as_deref() {
Some("sphere") => {
// NOTE: This pattern is good for testing performance of culling as it provides roughly
// the same number of visible meshes regardless of the viewing angle.
const N_POINTS: usize = WIDTH * HEIGHT * 4;
// NOTE: f64 is used to avoid precision issues that produce visual artifacts in the distribution
let radius = WIDTH as f64 * 2.5;
let golden_ratio = 0.5f64 * (1.0f64 + 5.0f64.sqrt());
for i in 0..N_POINTS {
let spherical_polar_theta_phi =
fibonacci_spiral_on_sphere(golden_ratio, i, N_POINTS);
let unit_sphere_p = spherical_polar_to_cartesian(spherical_polar_theta_phi);
commands.spawn(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_translation((radius * unit_sphere_p).as_vec3()),
..default()
});
}
// camera
commands.spawn(Camera3dBundle::default());
}
_ => {
// NOTE: This pattern is good for demonstrating that frustum culling is working correctly
// as the number of visible meshes rises and falls depending on the viewing angle.
for x in 0..WIDTH {
for y in 0..HEIGHT {
// introduce spaces to break any kind of moiré pattern
if x % 10 == 0 || y % 10 == 0 {
continue;
}
// cube
commands.spawn(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, (y as f32) * 2.5, 0.0),
..default()
});
commands.spawn(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(
(x as f32) * 2.5,
HEIGHT as f32 * 2.5,
(y as f32) * 2.5,
),
..default()
});
commands.spawn(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz((x as f32) * 2.5, 0.0, (y as f32) * 2.5),
..default()
});
commands.spawn(PbrBundle {
mesh: mesh.clone_weak(),
material: material.clone_weak(),
transform: Transform::from_xyz(0.0, (x as f32) * 2.5, (y as f32) * 2.5),
..default()
});
}
}
// camera
commands.spawn(Camera3dBundle {
transform: Transform::from_xyz(WIDTH as f32, HEIGHT as f32, WIDTH as f32),
..default()
});
}
}
// add one cube, the only one with strong handles
// also serves as a reference point during rotation
commands.spawn(PbrBundle {
mesh,
material,
transform: Transform {
translation: Vec3::new(0.0, HEIGHT as f32 * 2.5, 0.0),
scale: Vec3::splat(5.0),
..default()
},
..default()
});
commands.spawn(DirectionalLightBundle { ..default() });
}
// NOTE: This epsilon value is apparently optimal for optimizing for the average
// nearest-neighbor distance. See:
// http://extremelearning.com.au/how-to-evenly-distribute-points-on-a-sphere-more-effectively-than-the-canonical-fibonacci-lattice/
// for details.
const EPSILON: f64 = 0.36;
fn fibonacci_spiral_on_sphere(golden_ratio: f64, i: usize, n: usize) -> DVec2 {
DVec2::new(
PI * 2. * (i as f64 / golden_ratio),
(1.0 - 2.0 * (i as f64 + EPSILON) / (n as f64 - 1.0 + 2.0 * EPSILON)).acos(),
)
}
fn spherical_polar_to_cartesian(p: DVec2) -> DVec3 {
let (sin_theta, cos_theta) = p.x.sin_cos();
let (sin_phi, cos_phi) = p.y.sin_cos();
DVec3::new(cos_theta * sin_phi, sin_theta * sin_phi, cos_phi)
}
// System for rotating the camera
fn move_camera(time: Res<Time>, mut camera_query: Query<&mut Transform, With<Camera>>) {
let mut camera_transform = camera_query.single_mut();
let delta = time.delta_seconds() * 0.15;
camera_transform.rotate_z(delta);
camera_transform.rotate_x(delta);
}
// System for printing the number of meshes on every tick of the timer
fn print_mesh_count(
time: Res<Time>,
mut timer: Local<PrintingTimer>,
sprites: Query<(&Handle<Mesh>, &ComputedVisibility)>,
) {
timer.tick(time.delta());
if timer.just_finished() {
info!(
"Meshes: {} - Visible Meshes {}",
sprites.iter().len(),
sprites.iter().filter(|(_, cv)| cv.is_visible()).count(),
);
}
}
#[derive(Deref, DerefMut)]
struct PrintingTimer(Timer);
impl Default for PrintingTimer {
fn default() -> Self {
Self(Timer::from_seconds(1.0, TimerMode::Repeating))
}
}