bevy/crates/bevy_pbr/src/render/skin.rs
Zachary Harrold d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00

189 lines
6.9 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use core::mem::{self, size_of};
use bevy_asset::Assets;
use bevy_ecs::{entity::EntityHashMap, prelude::*};
use bevy_math::Mat4;
use bevy_render::{
batching::NoAutomaticBatching,
mesh::skinning::{SkinnedMesh, SkinnedMeshInverseBindposes},
render_resource::{BufferUsages, RawBufferVec},
renderer::{RenderDevice, RenderQueue},
view::ViewVisibility,
Extract,
};
use bevy_transform::prelude::GlobalTransform;
/// Maximum number of joints supported for skinned meshes.
pub const MAX_JOINTS: usize = 256;
#[derive(Component)]
pub struct SkinIndex {
pub index: u32,
}
impl SkinIndex {
/// Index to be in address space based on the size of a skin uniform.
const fn new(start: usize) -> Self {
SkinIndex {
index: (start * size_of::<Mat4>()) as u32,
}
}
}
/// Maps each skinned mesh to the applicable offset within the [`SkinUniforms`]
/// buffer.
///
/// We store both the current frame's joint matrices and the previous frame's
/// joint matrices for the purposes of motion vector calculation.
#[derive(Default, Resource)]
pub struct SkinIndices {
/// Maps each skinned mesh to the applicable offset within
/// [`SkinUniforms::current_buffer`].
pub current: EntityHashMap<SkinIndex>,
/// Maps each skinned mesh to the applicable offset within
/// [`SkinUniforms::prev_buffer`].
pub prev: EntityHashMap<SkinIndex>,
}
/// The GPU buffers containing joint matrices for all skinned meshes.
///
/// This is double-buffered: we store the joint matrices of each mesh for the
/// previous frame in addition to those of each mesh for the current frame. This
/// is for motion vector calculation. Every frame, we swap buffers and overwrite
/// the joint matrix buffer from two frames ago with the data for the current
/// frame.
///
/// Notes on implementation: see comment on top of the `extract_skins` system.
#[derive(Resource)]
pub struct SkinUniforms {
/// Stores all the joint matrices for skinned meshes in the current frame.
pub current_buffer: RawBufferVec<Mat4>,
/// Stores all the joint matrices for skinned meshes in the previous frame.
pub prev_buffer: RawBufferVec<Mat4>,
}
impl Default for SkinUniforms {
fn default() -> Self {
Self {
current_buffer: RawBufferVec::new(BufferUsages::UNIFORM),
prev_buffer: RawBufferVec::new(BufferUsages::UNIFORM),
}
}
}
pub fn prepare_skins(
render_device: Res<RenderDevice>,
render_queue: Res<RenderQueue>,
mut uniform: ResMut<SkinUniforms>,
) {
if uniform.current_buffer.is_empty() {
return;
}
let len = uniform.current_buffer.len();
uniform.current_buffer.reserve(len, &render_device);
uniform
.current_buffer
.write_buffer(&render_device, &render_queue);
// We don't need to write `uniform.prev_buffer` because we already wrote it
// last frame, and the data should still be on the GPU.
}
// Notes on implementation:
// We define the uniform binding as an array<mat4x4<f32>, N> in the shader,
// where N is the maximum number of Mat4s we can fit in the uniform binding,
// which may be as little as 16kB or 64kB. But, we may not need all N.
// We may only need, for example, 10.
//
// If we used uniform buffers normally then we would have to write a full
// binding of data for each dynamic offset binding, which is wasteful, makes
// the buffer much larger than it needs to be, and uses more memory bandwidth
// to transfer the data, which then costs frame time So @superdump came up
// with this design: just bind data at the specified offset and interpret
// the data at that offset as an array<T, N> regardless of what is there.
//
// So instead of writing N Mat4s when you only need 10, you write 10, and
// then pad up to the next dynamic offset alignment. Then write the next.
// And for the last dynamic offset binding, make sure there is a full binding
// of data after it so that the buffer is of size
// `last dynamic offset` + `array<mat4x4<f32>>`.
//
// Then when binding the first dynamic offset, the first 10 entries in the array
// are what you expect, but if you read the 11th youre reading invalid data
// which could be padding or could be from the next binding.
//
// In this way, we can pack variable sized arrays into uniform buffer bindings
// which normally only support fixed size arrays. You just have to make sure
// in the shader that you only read the values that are valid for that binding.
pub fn extract_skins(
skin_indices: ResMut<SkinIndices>,
uniform: ResMut<SkinUniforms>,
query: Extract<Query<(Entity, &ViewVisibility, &SkinnedMesh)>>,
inverse_bindposes: Extract<Res<Assets<SkinnedMeshInverseBindposes>>>,
joints: Extract<Query<&GlobalTransform>>,
) {
// Borrow check workaround.
let (skin_indices, uniform) = (skin_indices.into_inner(), uniform.into_inner());
// Swap buffers. We need to keep the previous frame's buffer around for the
// purposes of motion vector computation.
mem::swap(&mut skin_indices.current, &mut skin_indices.prev);
mem::swap(&mut uniform.current_buffer, &mut uniform.prev_buffer);
skin_indices.current.clear();
uniform.current_buffer.clear();
let mut last_start = 0;
// PERF: This can be expensive, can we move this to prepare?
for (entity, view_visibility, skin) in &query {
if !view_visibility.get() {
continue;
}
let buffer = &mut uniform.current_buffer;
let Some(inverse_bindposes) = inverse_bindposes.get(&skin.inverse_bindposes) else {
continue;
};
let start = buffer.len();
let target = start + skin.joints.len().min(MAX_JOINTS);
buffer.extend(
joints
.iter_many(&skin.joints)
.zip(inverse_bindposes.iter())
.take(MAX_JOINTS)
.map(|(joint, bindpose)| joint.affine() * *bindpose),
);
// iter_many will skip any failed fetches. This will cause it to assign the wrong bones,
// so just bail by truncating to the start.
if buffer.len() != target {
buffer.truncate(start);
continue;
}
last_start = last_start.max(start);
// Pad to 256 byte alignment
while buffer.len() % 4 != 0 {
buffer.push(Mat4::ZERO);
}
skin_indices.current.insert(entity, SkinIndex::new(start));
}
// Pad out the buffer to ensure that there's enough space for bindings
while uniform.current_buffer.len() - last_start < MAX_JOINTS {
uniform.current_buffer.push(Mat4::ZERO);
}
}
// NOTE: The skinned joints uniform buffer has to be bound at a dynamic offset per
// entity and so cannot currently be batched.
pub fn no_automatic_skin_batching(
mut commands: Commands,
query: Query<Entity, (With<SkinnedMesh>, Without<NoAutomaticBatching>)>,
) {
for entity in &query {
commands.entity(entity).try_insert(NoAutomaticBatching);
}
}