bevy/crates/bevy_pbr/src/render/mesh_view_bindings.rs
Zachary Harrold d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00

653 lines
24 KiB
Rust

use alloc::sync::Arc;
use core::{array, num::NonZero};
use bevy_core_pipeline::{
core_3d::ViewTransmissionTexture,
prepass::ViewPrepassTextures,
tonemapping::{
get_lut_bind_group_layout_entries, get_lut_bindings, Tonemapping, TonemappingLuts,
},
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
component::Component,
entity::Entity,
system::{Commands, Query, Res, Resource},
world::{FromWorld, World},
};
use bevy_math::Vec4;
use bevy_render::{
globals::{GlobalsBuffer, GlobalsUniform},
render_asset::RenderAssets,
render_resource::{binding_types::*, *},
renderer::RenderDevice,
texture::{BevyDefault, FallbackImage, FallbackImageMsaa, FallbackImageZero, GpuImage},
view::{
Msaa, RenderVisibilityRanges, ViewUniform, ViewUniforms,
VISIBILITY_RANGES_STORAGE_BUFFER_COUNT,
},
};
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
use bevy_render::render_resource::binding_types::texture_cube;
#[cfg(debug_assertions)]
use bevy_utils::warn_once;
use environment_map::EnvironmentMapLight;
#[cfg(debug_assertions)]
use crate::MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES;
use crate::{
environment_map::{self, RenderViewEnvironmentMapBindGroupEntries},
irradiance_volume::{
self, IrradianceVolume, RenderViewIrradianceVolumeBindGroupEntries,
IRRADIANCE_VOLUMES_ARE_USABLE,
},
prepass, EnvironmentMapUniformBuffer, FogMeta, GlobalClusterableObjectMeta,
GpuClusterableObjects, GpuFog, GpuLights, LightMeta, LightProbesBuffer, LightProbesUniform,
MeshPipeline, MeshPipelineKey, RenderViewLightProbes, ScreenSpaceAmbientOcclusionTextures,
ScreenSpaceReflectionsBuffer, ScreenSpaceReflectionsUniform, ShadowSamplers,
ViewClusterBindings, ViewShadowBindings, CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT,
};
#[derive(Clone)]
pub struct MeshPipelineViewLayout {
pub bind_group_layout: BindGroupLayout,
#[cfg(debug_assertions)]
pub texture_count: usize,
}
bitflags::bitflags! {
/// A key that uniquely identifies a [`MeshPipelineViewLayout`].
///
/// Used to generate all possible layouts for the mesh pipeline in [`generate_view_layouts`],
/// so special care must be taken to not add too many flags, as the number of possible layouts
/// will grow exponentially.
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
pub struct MeshPipelineViewLayoutKey: u32 {
const MULTISAMPLED = 1 << 0;
const DEPTH_PREPASS = 1 << 1;
const NORMAL_PREPASS = 1 << 2;
const MOTION_VECTOR_PREPASS = 1 << 3;
const DEFERRED_PREPASS = 1 << 4;
}
}
impl MeshPipelineViewLayoutKey {
// The number of possible layouts
pub const COUNT: usize = Self::all().bits() as usize + 1;
/// Builds a unique label for each layout based on the flags
pub fn label(&self) -> String {
use MeshPipelineViewLayoutKey as Key;
format!(
"mesh_view_layout{}{}{}{}{}",
self.contains(Key::MULTISAMPLED)
.then_some("_multisampled")
.unwrap_or_default(),
self.contains(Key::DEPTH_PREPASS)
.then_some("_depth")
.unwrap_or_default(),
self.contains(Key::NORMAL_PREPASS)
.then_some("_normal")
.unwrap_or_default(),
self.contains(Key::MOTION_VECTOR_PREPASS)
.then_some("_motion")
.unwrap_or_default(),
self.contains(Key::DEFERRED_PREPASS)
.then_some("_deferred")
.unwrap_or_default(),
)
}
}
impl From<MeshPipelineKey> for MeshPipelineViewLayoutKey {
fn from(value: MeshPipelineKey) -> Self {
let mut result = MeshPipelineViewLayoutKey::empty();
if value.msaa_samples() > 1 {
result |= MeshPipelineViewLayoutKey::MULTISAMPLED;
}
if value.contains(MeshPipelineKey::DEPTH_PREPASS) {
result |= MeshPipelineViewLayoutKey::DEPTH_PREPASS;
}
if value.contains(MeshPipelineKey::NORMAL_PREPASS) {
result |= MeshPipelineViewLayoutKey::NORMAL_PREPASS;
}
if value.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
result |= MeshPipelineViewLayoutKey::MOTION_VECTOR_PREPASS;
}
if value.contains(MeshPipelineKey::DEFERRED_PREPASS) {
result |= MeshPipelineViewLayoutKey::DEFERRED_PREPASS;
}
result
}
}
impl From<Msaa> for MeshPipelineViewLayoutKey {
fn from(value: Msaa) -> Self {
let mut result = MeshPipelineViewLayoutKey::empty();
if value.samples() > 1 {
result |= MeshPipelineViewLayoutKey::MULTISAMPLED;
}
result
}
}
impl From<Option<&ViewPrepassTextures>> for MeshPipelineViewLayoutKey {
fn from(value: Option<&ViewPrepassTextures>) -> Self {
let mut result = MeshPipelineViewLayoutKey::empty();
if let Some(prepass_textures) = value {
if prepass_textures.depth.is_some() {
result |= MeshPipelineViewLayoutKey::DEPTH_PREPASS;
}
if prepass_textures.normal.is_some() {
result |= MeshPipelineViewLayoutKey::NORMAL_PREPASS;
}
if prepass_textures.motion_vectors.is_some() {
result |= MeshPipelineViewLayoutKey::MOTION_VECTOR_PREPASS;
}
if prepass_textures.deferred.is_some() {
result |= MeshPipelineViewLayoutKey::DEFERRED_PREPASS;
}
}
result
}
}
fn buffer_layout(
buffer_binding_type: BufferBindingType,
has_dynamic_offset: bool,
min_binding_size: Option<NonZero<u64>>,
) -> BindGroupLayoutEntryBuilder {
match buffer_binding_type {
BufferBindingType::Uniform => uniform_buffer_sized(has_dynamic_offset, min_binding_size),
BufferBindingType::Storage { read_only } => {
if read_only {
storage_buffer_read_only_sized(has_dynamic_offset, min_binding_size)
} else {
storage_buffer_sized(has_dynamic_offset, min_binding_size)
}
}
}
}
/// Returns the appropriate bind group layout vec based on the parameters
fn layout_entries(
clustered_forward_buffer_binding_type: BufferBindingType,
visibility_ranges_buffer_binding_type: BufferBindingType,
layout_key: MeshPipelineViewLayoutKey,
render_device: &RenderDevice,
) -> Vec<BindGroupLayoutEntry> {
let mut entries = DynamicBindGroupLayoutEntries::new_with_indices(
ShaderStages::FRAGMENT,
(
// View
(
0,
uniform_buffer::<ViewUniform>(true).visibility(ShaderStages::VERTEX_FRAGMENT),
),
// Lights
(1, uniform_buffer::<GpuLights>(true)),
// Point Shadow Texture Cube Array
(
2,
#[cfg(all(
not(feature = "ios_simulator"),
any(
not(feature = "webgl"),
not(target_arch = "wasm32"),
feature = "webgpu"
)
))]
texture_cube_array(TextureSampleType::Depth),
#[cfg(any(
feature = "ios_simulator",
all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu"))
))]
texture_cube(TextureSampleType::Depth),
),
// Point Shadow Texture Array Comparison Sampler
(3, sampler(SamplerBindingType::Comparison)),
// Point Shadow Texture Array Linear Sampler
(4, sampler(SamplerBindingType::Filtering)),
// Directional Shadow Texture Array
(
5,
#[cfg(any(
not(feature = "webgl"),
not(target_arch = "wasm32"),
feature = "webgpu"
))]
texture_2d_array(TextureSampleType::Depth),
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
texture_2d(TextureSampleType::Depth),
),
// Directional Shadow Texture Array Comparison Sampler
(6, sampler(SamplerBindingType::Comparison)),
// Directional Shadow Texture Array Linear Sampler
(7, sampler(SamplerBindingType::Filtering)),
// PointLights
(
8,
buffer_layout(
clustered_forward_buffer_binding_type,
false,
Some(GpuClusterableObjects::min_size(
clustered_forward_buffer_binding_type,
)),
),
),
// ClusteredLightIndexLists
(
9,
buffer_layout(
clustered_forward_buffer_binding_type,
false,
Some(
ViewClusterBindings::min_size_clusterable_object_index_lists(
clustered_forward_buffer_binding_type,
),
),
),
),
// ClusterOffsetsAndCounts
(
10,
buffer_layout(
clustered_forward_buffer_binding_type,
false,
Some(ViewClusterBindings::min_size_cluster_offsets_and_counts(
clustered_forward_buffer_binding_type,
)),
),
),
// Globals
(
11,
uniform_buffer::<GlobalsUniform>(false).visibility(ShaderStages::VERTEX_FRAGMENT),
),
// Fog
(12, uniform_buffer::<GpuFog>(true)),
// Light probes
(13, uniform_buffer::<LightProbesUniform>(true)),
// Visibility ranges
(
14,
buffer_layout(
visibility_ranges_buffer_binding_type,
false,
Some(Vec4::min_size()),
)
.visibility(ShaderStages::VERTEX),
),
// Screen space reflection settings
(15, uniform_buffer::<ScreenSpaceReflectionsUniform>(true)),
// Screen space ambient occlusion texture
(
16,
texture_2d(TextureSampleType::Float { filterable: false }),
),
),
);
// EnvironmentMapLight
let environment_map_entries = environment_map::get_bind_group_layout_entries(render_device);
entries = entries.extend_with_indices((
(17, environment_map_entries[0]),
(18, environment_map_entries[1]),
(19, environment_map_entries[2]),
(20, environment_map_entries[3]),
));
// Irradiance volumes
if IRRADIANCE_VOLUMES_ARE_USABLE {
let irradiance_volume_entries =
irradiance_volume::get_bind_group_layout_entries(render_device);
entries = entries.extend_with_indices((
(21, irradiance_volume_entries[0]),
(22, irradiance_volume_entries[1]),
));
}
// Tonemapping
let tonemapping_lut_entries = get_lut_bind_group_layout_entries();
entries = entries.extend_with_indices((
(23, tonemapping_lut_entries[0]),
(24, tonemapping_lut_entries[1]),
));
// Prepass
if cfg!(any(not(feature = "webgl"), not(target_arch = "wasm32")))
|| (cfg!(all(feature = "webgl", target_arch = "wasm32"))
&& !layout_key.contains(MeshPipelineViewLayoutKey::MULTISAMPLED))
{
for (entry, binding) in prepass::get_bind_group_layout_entries(layout_key)
.iter()
.zip([25, 26, 27, 28])
{
if let Some(entry) = entry {
entries = entries.extend_with_indices(((binding as u32, *entry),));
}
}
}
// View Transmission Texture
entries = entries.extend_with_indices((
(
29,
texture_2d(TextureSampleType::Float { filterable: true }),
),
(30, sampler(SamplerBindingType::Filtering)),
));
entries.to_vec()
}
/// Stores the view layouts for every combination of pipeline keys.
///
/// This is wrapped in an [`Arc`] so that it can be efficiently cloned and
/// placed inside specializable pipeline types.
#[derive(Resource, Clone, Deref, DerefMut)]
pub struct MeshPipelineViewLayouts(
pub Arc<[MeshPipelineViewLayout; MeshPipelineViewLayoutKey::COUNT]>,
);
impl FromWorld for MeshPipelineViewLayouts {
fn from_world(world: &mut World) -> Self {
// Generates all possible view layouts for the mesh pipeline, based on all combinations of
// [`MeshPipelineViewLayoutKey`] flags.
let render_device = world.resource::<RenderDevice>();
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
let visibility_ranges_buffer_binding_type = render_device
.get_supported_read_only_binding_type(VISIBILITY_RANGES_STORAGE_BUFFER_COUNT);
Self(Arc::new(array::from_fn(|i| {
let key = MeshPipelineViewLayoutKey::from_bits_truncate(i as u32);
let entries = layout_entries(
clustered_forward_buffer_binding_type,
visibility_ranges_buffer_binding_type,
key,
render_device,
);
#[cfg(debug_assertions)]
let texture_count: usize = entries
.iter()
.filter(|entry| matches!(entry.ty, BindingType::Texture { .. }))
.count();
MeshPipelineViewLayout {
bind_group_layout: render_device
.create_bind_group_layout(key.label().as_str(), &entries),
#[cfg(debug_assertions)]
texture_count,
}
})))
}
}
impl MeshPipelineViewLayouts {
pub fn get_view_layout(&self, layout_key: MeshPipelineViewLayoutKey) -> &BindGroupLayout {
let index = layout_key.bits() as usize;
let layout = &self[index];
#[cfg(debug_assertions)]
if layout.texture_count > MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES {
// Issue our own warning here because Naga's error message is a bit cryptic in this situation
warn_once!("Too many textures in mesh pipeline view layout, this might cause us to hit `wgpu::Limits::max_sampled_textures_per_shader_stage` in some environments.");
}
&layout.bind_group_layout
}
}
/// Generates all possible view layouts for the mesh pipeline, based on all combinations of
/// [`MeshPipelineViewLayoutKey`] flags.
pub fn generate_view_layouts(
render_device: &RenderDevice,
clustered_forward_buffer_binding_type: BufferBindingType,
visibility_ranges_buffer_binding_type: BufferBindingType,
) -> [MeshPipelineViewLayout; MeshPipelineViewLayoutKey::COUNT] {
array::from_fn(|i| {
let key = MeshPipelineViewLayoutKey::from_bits_truncate(i as u32);
let entries = layout_entries(
clustered_forward_buffer_binding_type,
visibility_ranges_buffer_binding_type,
key,
render_device,
);
#[cfg(debug_assertions)]
let texture_count: usize = entries
.iter()
.filter(|entry| matches!(entry.ty, BindingType::Texture { .. }))
.count();
MeshPipelineViewLayout {
bind_group_layout: render_device
.create_bind_group_layout(key.label().as_str(), &entries),
#[cfg(debug_assertions)]
texture_count,
}
})
}
#[derive(Component)]
pub struct MeshViewBindGroup {
pub value: BindGroup,
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_mesh_view_bind_groups(
mut commands: Commands,
render_device: Res<RenderDevice>,
mesh_pipeline: Res<MeshPipeline>,
shadow_samplers: Res<ShadowSamplers>,
light_meta: Res<LightMeta>,
global_light_meta: Res<GlobalClusterableObjectMeta>,
fog_meta: Res<FogMeta>,
(view_uniforms, environment_map_uniform): (Res<ViewUniforms>, Res<EnvironmentMapUniformBuffer>),
views: Query<(
Entity,
&ViewShadowBindings,
&ViewClusterBindings,
&Msaa,
Option<&ScreenSpaceAmbientOcclusionTextures>,
Option<&ViewPrepassTextures>,
Option<&ViewTransmissionTexture>,
&Tonemapping,
Option<&RenderViewLightProbes<EnvironmentMapLight>>,
Option<&RenderViewLightProbes<IrradianceVolume>>,
)>,
(images, mut fallback_images, fallback_image, fallback_image_zero): (
Res<RenderAssets<GpuImage>>,
FallbackImageMsaa,
Res<FallbackImage>,
Res<FallbackImageZero>,
),
globals_buffer: Res<GlobalsBuffer>,
tonemapping_luts: Res<TonemappingLuts>,
light_probes_buffer: Res<LightProbesBuffer>,
visibility_ranges: Res<RenderVisibilityRanges>,
ssr_buffer: Res<ScreenSpaceReflectionsBuffer>,
) {
if let (
Some(view_binding),
Some(light_binding),
Some(clusterable_objects_binding),
Some(globals),
Some(fog_binding),
Some(light_probes_binding),
Some(visibility_ranges_buffer),
Some(ssr_binding),
Some(environment_map_binding),
) = (
view_uniforms.uniforms.binding(),
light_meta.view_gpu_lights.binding(),
global_light_meta.gpu_clusterable_objects.binding(),
globals_buffer.buffer.binding(),
fog_meta.gpu_fogs.binding(),
light_probes_buffer.binding(),
visibility_ranges.buffer().buffer(),
ssr_buffer.binding(),
environment_map_uniform.binding(),
) {
for (
entity,
shadow_bindings,
cluster_bindings,
msaa,
ssao_textures,
prepass_textures,
transmission_texture,
tonemapping,
render_view_environment_maps,
render_view_irradiance_volumes,
) in &views
{
let fallback_ssao = fallback_images
.image_for_samplecount(1, TextureFormat::bevy_default())
.texture_view
.clone();
let ssao_view = ssao_textures
.map(|t| &t.screen_space_ambient_occlusion_texture.default_view)
.unwrap_or(&fallback_ssao);
let layout = &mesh_pipeline.get_view_layout(
MeshPipelineViewLayoutKey::from(*msaa)
| MeshPipelineViewLayoutKey::from(prepass_textures),
);
let mut entries = DynamicBindGroupEntries::new_with_indices((
(0, view_binding.clone()),
(1, light_binding.clone()),
(2, &shadow_bindings.point_light_depth_texture_view),
(3, &shadow_samplers.point_light_comparison_sampler),
(4, &shadow_samplers.point_light_linear_sampler),
(5, &shadow_bindings.directional_light_depth_texture_view),
(6, &shadow_samplers.directional_light_comparison_sampler),
(7, &shadow_samplers.directional_light_linear_sampler),
(8, clusterable_objects_binding.clone()),
(
9,
cluster_bindings
.clusterable_object_index_lists_binding()
.unwrap(),
),
(10, cluster_bindings.offsets_and_counts_binding().unwrap()),
(11, globals.clone()),
(12, fog_binding.clone()),
(13, light_probes_binding.clone()),
(14, visibility_ranges_buffer.as_entire_binding()),
(15, ssr_binding.clone()),
(16, ssao_view),
));
let environment_map_bind_group_entries = RenderViewEnvironmentMapBindGroupEntries::get(
render_view_environment_maps,
&images,
&fallback_image,
&render_device,
);
match environment_map_bind_group_entries {
RenderViewEnvironmentMapBindGroupEntries::Single {
diffuse_texture_view,
specular_texture_view,
sampler,
} => {
entries = entries.extend_with_indices((
(17, diffuse_texture_view),
(18, specular_texture_view),
(19, sampler),
(20, environment_map_binding.clone()),
));
}
RenderViewEnvironmentMapBindGroupEntries::Multiple {
ref diffuse_texture_views,
ref specular_texture_views,
sampler,
} => {
entries = entries.extend_with_indices((
(17, diffuse_texture_views.as_slice()),
(18, specular_texture_views.as_slice()),
(19, sampler),
(20, environment_map_binding.clone()),
));
}
}
let irradiance_volume_bind_group_entries = if IRRADIANCE_VOLUMES_ARE_USABLE {
Some(RenderViewIrradianceVolumeBindGroupEntries::get(
render_view_irradiance_volumes,
&images,
&fallback_image,
&render_device,
))
} else {
None
};
match irradiance_volume_bind_group_entries {
Some(RenderViewIrradianceVolumeBindGroupEntries::Single {
texture_view,
sampler,
}) => {
entries = entries.extend_with_indices(((21, texture_view), (22, sampler)));
}
Some(RenderViewIrradianceVolumeBindGroupEntries::Multiple {
ref texture_views,
sampler,
}) => {
entries = entries
.extend_with_indices(((21, texture_views.as_slice()), (22, sampler)));
}
None => {}
}
let lut_bindings =
get_lut_bindings(&images, &tonemapping_luts, tonemapping, &fallback_image);
entries = entries.extend_with_indices(((23, lut_bindings.0), (24, lut_bindings.1)));
// When using WebGL, we can't have a depth texture with multisampling
let prepass_bindings;
if cfg!(any(not(feature = "webgl"), not(target_arch = "wasm32"))) || msaa.samples() == 1
{
prepass_bindings = prepass::get_bindings(prepass_textures);
for (binding, index) in prepass_bindings
.iter()
.map(Option::as_ref)
.zip([25, 26, 27, 28])
.flat_map(|(b, i)| b.map(|b| (b, i)))
{
entries = entries.extend_with_indices(((index, binding),));
}
};
let transmission_view = transmission_texture
.map(|transmission| &transmission.view)
.unwrap_or(&fallback_image_zero.texture_view);
let transmission_sampler = transmission_texture
.map(|transmission| &transmission.sampler)
.unwrap_or(&fallback_image_zero.sampler);
entries =
entries.extend_with_indices(((29, transmission_view), (30, transmission_sampler)));
commands.entity(entity).insert(MeshViewBindGroup {
value: render_device.create_bind_group("mesh_view_bind_group", layout, &entries),
});
}
}
}