bevy/crates/bevy_pbr/src/render/mesh.rs
Zachary Harrold d70595b667
Add core and alloc over std Lints (#15281)
# Objective

- Fixes #6370
- Closes #6581

## Solution

- Added the following lints to the workspace:
  - `std_instead_of_core`
  - `std_instead_of_alloc`
  - `alloc_instead_of_core`
- Used `cargo +nightly fmt` with [item level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Item%5C%3A)
to split all `use` statements into single items.
- Used `cargo clippy --workspace --all-targets --all-features --fix
--allow-dirty` to _attempt_ to resolve the new linting issues, and
intervened where the lint was unable to resolve the issue automatically
(usually due to needing an `extern crate alloc;` statement in a crate
root).
- Manually removed certain uses of `std` where negative feature gating
prevented `--all-features` from finding the offending uses.
- Used `cargo +nightly fmt` with [crate level use
formatting](https://rust-lang.github.io/rustfmt/?version=v1.6.0&search=#Crate%5C%3A)
to re-merge all `use` statements matching Bevy's previous styling.
- Manually fixed cases where the `fmt` tool could not re-merge `use`
statements due to conditional compilation attributes.

## Testing

- Ran CI locally

## Migration Guide

The MSRV is now 1.81. Please update to this version or higher.

## Notes

- This is a _massive_ change to try and push through, which is why I've
outlined the semi-automatic steps I used to create this PR, in case this
fails and someone else tries again in the future.
- Making this change has no impact on user code, but does mean Bevy
contributors will be warned to use `core` and `alloc` instead of `std`
where possible.
- This lint is a critical first step towards investigating `no_std`
options for Bevy.

---------

Co-authored-by: François Mockers <francois.mockers@vleue.com>
2024-09-27 00:59:59 +00:00

2445 lines
95 KiB
Rust

use core::mem::{self, size_of};
use allocator::MeshAllocator;
use bevy_asset::{load_internal_asset, AssetId};
use bevy_core_pipeline::{
core_3d::{AlphaMask3d, Opaque3d, Transmissive3d, Transparent3d, CORE_3D_DEPTH_FORMAT},
deferred::{AlphaMask3dDeferred, Opaque3dDeferred},
prepass::MotionVectorPrepass,
};
use bevy_derive::{Deref, DerefMut};
use bevy_ecs::{
entity::EntityHashMap,
prelude::*,
query::ROQueryItem,
system::{lifetimeless::*, SystemParamItem, SystemState},
};
use bevy_math::{Affine3, Rect, UVec2, Vec3, Vec4};
use bevy_render::{
batching::{
gpu_preprocessing::{
self, GpuPreprocessingSupport, IndirectParameters, IndirectParametersBuffer,
},
no_gpu_preprocessing, GetBatchData, GetFullBatchData, NoAutomaticBatching,
},
camera::Camera,
mesh::*,
primitives::Aabb,
render_asset::RenderAssets,
render_phase::{
BinnedRenderPhasePlugin, PhaseItem, RenderCommand, RenderCommandResult,
SortedRenderPhasePlugin, TrackedRenderPass,
},
render_resource::*,
renderer::{RenderDevice, RenderQueue},
texture::{BevyDefault, DefaultImageSampler, ImageSampler, TextureFormatPixelInfo},
view::{
prepare_view_targets, GpuCulling, RenderVisibilityRanges, ViewTarget, ViewUniformOffset,
ViewVisibility, VisibilityRange,
},
Extract,
};
use bevy_transform::components::GlobalTransform;
use bevy_utils::{
tracing::{error, warn},
Entry, HashMap, Parallel,
};
use bytemuck::{Pod, Zeroable};
use nonmax::{NonMaxU16, NonMaxU32};
use static_assertions::const_assert_eq;
use crate::{
render::{
morph::{
extract_morphs, no_automatic_morph_batching, prepare_morphs, MorphIndices,
MorphUniforms,
},
skin::no_automatic_skin_batching,
},
*,
};
use self::irradiance_volume::IRRADIANCE_VOLUMES_ARE_USABLE;
/// Provides support for rendering 3D meshes.
#[derive(Default)]
pub struct MeshRenderPlugin {
/// Whether we're building [`MeshUniform`]s on GPU.
///
/// This requires compute shader support and so will be forcibly disabled if
/// the platform doesn't support those.
pub use_gpu_instance_buffer_builder: bool,
}
pub const FORWARD_IO_HANDLE: Handle<Shader> = Handle::weak_from_u128(2645551199423808407);
pub const MESH_VIEW_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(8140454348013264787);
pub const MESH_VIEW_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(9076678235888822571);
pub const MESH_TYPES_HANDLE: Handle<Shader> = Handle::weak_from_u128(2506024101911992377);
pub const MESH_BINDINGS_HANDLE: Handle<Shader> = Handle::weak_from_u128(16831548636314682308);
pub const MESH_FUNCTIONS_HANDLE: Handle<Shader> = Handle::weak_from_u128(6300874327833745635);
pub const MESH_SHADER_HANDLE: Handle<Shader> = Handle::weak_from_u128(3252377289100772450);
pub const SKINNING_HANDLE: Handle<Shader> = Handle::weak_from_u128(13215291596265391738);
pub const MORPH_HANDLE: Handle<Shader> = Handle::weak_from_u128(970982813587607345);
/// How many textures are allowed in the view bind group layout (`@group(0)`) before
/// broader compatibility with WebGL and WebGPU is at risk, due to the minimum guaranteed
/// values for `MAX_TEXTURE_IMAGE_UNITS` (in WebGL) and `maxSampledTexturesPerShaderStage` (in WebGPU),
/// currently both at 16.
///
/// We use 10 here because it still leaves us, in a worst case scenario, with 6 textures for the other bind groups.
///
/// See: <https://gpuweb.github.io/gpuweb/#limits>
#[cfg(debug_assertions)]
pub const MESH_PIPELINE_VIEW_LAYOUT_SAFE_MAX_TEXTURES: usize = 10;
impl Plugin for MeshRenderPlugin {
fn build(&self, app: &mut App) {
load_internal_asset!(app, FORWARD_IO_HANDLE, "forward_io.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_VIEW_TYPES_HANDLE,
"mesh_view_types.wgsl",
Shader::from_wgsl_with_defs,
vec![
ShaderDefVal::UInt(
"MAX_DIRECTIONAL_LIGHTS".into(),
MAX_DIRECTIONAL_LIGHTS as u32
),
ShaderDefVal::UInt(
"MAX_CASCADES_PER_LIGHT".into(),
MAX_CASCADES_PER_LIGHT as u32,
)
]
);
load_internal_asset!(
app,
MESH_VIEW_BINDINGS_HANDLE,
"mesh_view_bindings.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_TYPES_HANDLE, "mesh_types.wgsl", Shader::from_wgsl);
load_internal_asset!(
app,
MESH_FUNCTIONS_HANDLE,
"mesh_functions.wgsl",
Shader::from_wgsl
);
load_internal_asset!(app, MESH_SHADER_HANDLE, "mesh.wgsl", Shader::from_wgsl);
load_internal_asset!(app, SKINNING_HANDLE, "skinning.wgsl", Shader::from_wgsl);
load_internal_asset!(app, MORPH_HANDLE, "morph.wgsl", Shader::from_wgsl);
app.add_systems(
PostUpdate,
(no_automatic_skin_batching, no_automatic_morph_batching),
)
.add_plugins((
BinnedRenderPhasePlugin::<Opaque3d, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<AlphaMask3d, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<Shadow, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<Opaque3dDeferred, MeshPipeline>::default(),
BinnedRenderPhasePlugin::<AlphaMask3dDeferred, MeshPipeline>::default(),
SortedRenderPhasePlugin::<Transmissive3d, MeshPipeline>::default(),
SortedRenderPhasePlugin::<Transparent3d, MeshPipeline>::default(),
));
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<MeshBindGroups>()
.init_resource::<SkinUniforms>()
.init_resource::<SkinIndices>()
.init_resource::<MorphUniforms>()
.init_resource::<MorphIndices>()
.init_resource::<MeshCullingDataBuffer>()
.add_systems(
ExtractSchedule,
(
extract_skins,
extract_morphs,
gpu_preprocessing::clear_batched_gpu_instance_buffers::<MeshPipeline>
.before(ExtractMeshesSet),
),
)
.add_systems(
Render,
(
set_mesh_motion_vector_flags.before(RenderSet::Queue),
prepare_skins.in_set(RenderSet::PrepareResources),
prepare_morphs.in_set(RenderSet::PrepareResources),
prepare_mesh_bind_group.in_set(RenderSet::PrepareBindGroups),
prepare_mesh_view_bind_groups.in_set(RenderSet::PrepareBindGroups),
no_gpu_preprocessing::clear_batched_cpu_instance_buffers::<MeshPipeline>
.in_set(RenderSet::Cleanup)
.after(RenderSet::Render),
),
);
}
}
fn finish(&self, app: &mut App) {
let mut mesh_bindings_shader_defs = Vec::with_capacity(1);
if let Some(render_app) = app.get_sub_app_mut(RenderApp) {
render_app.init_resource::<GpuPreprocessingSupport>();
let gpu_preprocessing_support =
render_app.world().resource::<GpuPreprocessingSupport>();
let use_gpu_instance_buffer_builder = self.use_gpu_instance_buffer_builder
&& *gpu_preprocessing_support != GpuPreprocessingSupport::None;
let render_mesh_instances = RenderMeshInstances::new(use_gpu_instance_buffer_builder);
render_app.insert_resource(render_mesh_instances);
if use_gpu_instance_buffer_builder {
render_app
.init_resource::<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>()
.init_resource::<RenderMeshInstanceGpuQueues>()
.add_systems(
ExtractSchedule,
extract_meshes_for_gpu_building.in_set(ExtractMeshesSet),
)
.add_systems(
Render,
(
gpu_preprocessing::write_batched_instance_buffers::<MeshPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
gpu_preprocessing::delete_old_work_item_buffers::<MeshPipeline>
.in_set(RenderSet::ManageViews)
.after(prepare_view_targets),
collect_meshes_for_gpu_building
.in_set(RenderSet::PrepareAssets)
.after(allocator::allocate_and_free_meshes),
),
);
} else {
let render_device = render_app.world().resource::<RenderDevice>();
let cpu_batched_instance_buffer =
no_gpu_preprocessing::BatchedInstanceBuffer::<MeshUniform>::new(render_device);
render_app
.insert_resource(cpu_batched_instance_buffer)
.add_systems(
ExtractSchedule,
extract_meshes_for_cpu_building.in_set(ExtractMeshesSet),
)
.add_systems(
Render,
no_gpu_preprocessing::write_batched_instance_buffer::<MeshPipeline>
.in_set(RenderSet::PrepareResourcesFlush),
);
};
let render_device = render_app.world().resource::<RenderDevice>();
if let Some(per_object_buffer_batch_size) =
GpuArrayBuffer::<MeshUniform>::batch_size(render_device)
{
mesh_bindings_shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
render_app
.init_resource::<MeshPipelineViewLayouts>()
.init_resource::<MeshPipeline>();
}
// Load the mesh_bindings shader module here as it depends on runtime information about
// whether storage buffers are supported, or the maximum uniform buffer binding size.
load_internal_asset!(
app,
MESH_BINDINGS_HANDLE,
"mesh_bindings.wgsl",
Shader::from_wgsl_with_defs,
mesh_bindings_shader_defs
);
}
}
#[derive(Component)]
pub struct MeshTransforms {
pub world_from_local: Affine3,
pub previous_world_from_local: Affine3,
pub flags: u32,
}
#[derive(ShaderType, Clone)]
pub struct MeshUniform {
// Affine 4x3 matrices transposed to 3x4
pub world_from_local: [Vec4; 3],
pub previous_world_from_local: [Vec4; 3],
// 3x3 matrix packed in mat2x4 and f32 as:
// [0].xyz, [1].x,
// [1].yz, [2].xy
// [2].z
pub local_from_world_transpose_a: [Vec4; 2],
pub local_from_world_transpose_b: f32,
pub flags: u32,
// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
//
// <--- MSB LSB --->
// +---- min v ----+ +---- min u ----+
// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
// +---- max v ----+ +---- max u ----+
// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
//
// (MSB: most significant bit; LSB: least significant bit.)
pub lightmap_uv_rect: UVec2,
/// The index of this mesh's first vertex in the vertex buffer.
///
/// Multiple meshes can be packed into a single vertex buffer (see
/// [`MeshAllocator`]). This value stores the offset of the first vertex in
/// this mesh in that buffer.
pub first_vertex_index: u32,
/// Padding.
pub pad_a: u32,
/// Padding.
pub pad_b: u32,
/// Padding.
pub pad_c: u32,
}
/// Information that has to be transferred from CPU to GPU in order to produce
/// the full [`MeshUniform`].
///
/// This is essentially a subset of the fields in [`MeshUniform`] above.
#[derive(ShaderType, Pod, Zeroable, Clone, Copy)]
#[repr(C)]
pub struct MeshInputUniform {
/// Affine 4x3 matrix transposed to 3x4.
pub world_from_local: [Vec4; 3],
/// Four 16-bit unsigned normalized UV values packed into a `UVec2`:
///
/// ```text
/// <--- MSB LSB --->
/// +---- min v ----+ +---- min u ----+
/// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
/// +---- max v ----+ +---- max u ----+
/// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
///
/// (MSB: most significant bit; LSB: least significant bit.)
/// ```
pub lightmap_uv_rect: UVec2,
/// Various [`MeshFlags`].
pub flags: u32,
/// The index of this mesh's [`MeshInputUniform`] in the previous frame's
/// buffer, if applicable.
///
/// This is used for TAA. If not present, this will be `u32::MAX`.
pub previous_input_index: u32,
/// The index of this mesh's first vertex in the vertex buffer.
///
/// Multiple meshes can be packed into a single vertex buffer (see
/// [`MeshAllocator`]). This value stores the offset of the first vertex in
/// this mesh in that buffer.
pub first_vertex_index: u32,
/// Padding.
pub pad_a: u32,
/// Padding.
pub pad_b: u32,
/// Padding.
pub pad_c: u32,
}
/// Information about each mesh instance needed to cull it on GPU.
///
/// This consists of its axis-aligned bounding box (AABB).
#[derive(ShaderType, Pod, Zeroable, Clone, Copy)]
#[repr(C)]
pub struct MeshCullingData {
/// The 3D center of the AABB in model space, padded with an extra unused
/// float value.
pub aabb_center: Vec4,
/// The 3D extents of the AABB in model space, divided by two, padded with
/// an extra unused float value.
pub aabb_half_extents: Vec4,
}
/// A GPU buffer that holds the information needed to cull meshes on GPU.
///
/// At the moment, this simply holds each mesh's AABB.
///
/// To avoid wasting CPU time in the CPU culling case, this buffer will be empty
/// if GPU culling isn't in use.
#[derive(Resource, Deref, DerefMut)]
pub struct MeshCullingDataBuffer(RawBufferVec<MeshCullingData>);
impl MeshUniform {
pub fn new(
mesh_transforms: &MeshTransforms,
first_vertex_index: u32,
maybe_lightmap_uv_rect: Option<Rect>,
) -> Self {
let (local_from_world_transpose_a, local_from_world_transpose_b) =
mesh_transforms.world_from_local.inverse_transpose_3x3();
Self {
world_from_local: mesh_transforms.world_from_local.to_transpose(),
previous_world_from_local: mesh_transforms.previous_world_from_local.to_transpose(),
lightmap_uv_rect: pack_lightmap_uv_rect(maybe_lightmap_uv_rect),
local_from_world_transpose_a,
local_from_world_transpose_b,
flags: mesh_transforms.flags,
first_vertex_index,
pad_a: 0,
pad_b: 0,
pad_c: 0,
}
}
}
// NOTE: These must match the bit flags in bevy_pbr/src/render/mesh_types.wgsl!
bitflags::bitflags! {
/// Various flags and tightly-packed values on a mesh.
///
/// Flags grow from the top bit down; other values grow from the bottom bit
/// up.
#[repr(transparent)]
pub struct MeshFlags: u32 {
/// Bitmask for the 16-bit index into the LOD array.
///
/// This will be `u16::MAX` if this mesh has no LOD.
const LOD_INDEX_MASK = (1 << 16) - 1;
const SHADOW_RECEIVER = 1 << 29;
const TRANSMITTED_SHADOW_RECEIVER = 1 << 30;
// Indicates the sign of the determinant of the 3x3 model matrix. If the sign is positive,
// then the flag should be set, else it should not be set.
const SIGN_DETERMINANT_MODEL_3X3 = 1 << 31;
const NONE = 0;
const UNINITIALIZED = 0xFFFFFFFF;
}
}
impl MeshFlags {
fn from_components(
transform: &GlobalTransform,
lod_index: Option<NonMaxU16>,
not_shadow_receiver: bool,
transmitted_receiver: bool,
) -> MeshFlags {
let mut mesh_flags = if not_shadow_receiver {
MeshFlags::empty()
} else {
MeshFlags::SHADOW_RECEIVER
};
if transmitted_receiver {
mesh_flags |= MeshFlags::TRANSMITTED_SHADOW_RECEIVER;
}
if transform.affine().matrix3.determinant().is_sign_positive() {
mesh_flags |= MeshFlags::SIGN_DETERMINANT_MODEL_3X3;
}
let lod_index_bits = match lod_index {
None => u16::MAX,
Some(lod_index) => u16::from(lod_index),
};
mesh_flags |=
MeshFlags::from_bits_retain((lod_index_bits as u32) << MeshFlags::LOD_INDEX_SHIFT);
mesh_flags
}
/// The first bit of the LOD index.
pub const LOD_INDEX_SHIFT: u32 = 0;
}
bitflags::bitflags! {
/// Various useful flags for [`RenderMeshInstance`]s.
#[derive(Clone, Copy)]
pub struct RenderMeshInstanceFlags: u8 {
/// The mesh casts shadows.
const SHADOW_CASTER = 1 << 0;
/// The mesh can participate in automatic batching.
const AUTOMATIC_BATCHING = 1 << 1;
/// The mesh had a transform last frame and so is eligible for motion
/// vector computation.
const HAS_PREVIOUS_TRANSFORM = 1 << 2;
/// The mesh had a skin last frame and so that skin should be taken into
/// account for motion vector computation.
const HAS_PREVIOUS_SKIN = 1 << 3;
/// The mesh had morph targets last frame and so they should be taken
/// into account for motion vector computation.
const HAS_PREVIOUS_MORPH = 1 << 4;
}
}
/// CPU data that the render world keeps for each entity, when *not* using GPU
/// mesh uniform building.
#[derive(Deref, DerefMut)]
pub struct RenderMeshInstanceCpu {
/// Data shared between both the CPU mesh uniform building and the GPU mesh
/// uniform building paths.
#[deref]
pub shared: RenderMeshInstanceShared,
/// The transform of the mesh.
///
/// This will be written into the [`MeshUniform`] at the appropriate time.
pub transforms: MeshTransforms,
}
/// CPU data that the render world needs to keep for each entity that contains a
/// mesh when using GPU mesh uniform building.
#[derive(Deref, DerefMut)]
pub struct RenderMeshInstanceGpu {
/// Data shared between both the CPU mesh uniform building and the GPU mesh
/// uniform building paths.
#[deref]
pub shared: RenderMeshInstanceShared,
/// The translation of the mesh.
///
/// This is the only part of the transform that we have to keep on CPU (for
/// distance sorting).
pub translation: Vec3,
/// The index of the [`MeshInputUniform`] in the buffer.
pub current_uniform_index: NonMaxU32,
}
/// CPU data that the render world needs to keep about each entity that contains
/// a mesh.
pub struct RenderMeshInstanceShared {
/// The [`AssetId`] of the mesh.
pub mesh_asset_id: AssetId<Mesh>,
/// A slot for the material bind group ID.
///
/// This is filled in during [`crate::material::queue_material_meshes`].
pub material_bind_group_id: AtomicMaterialBindGroupId,
/// Various flags.
pub flags: RenderMeshInstanceFlags,
}
/// Information that is gathered during the parallel portion of mesh extraction
/// when GPU mesh uniform building is enabled.
///
/// From this, the [`MeshInputUniform`] and [`RenderMeshInstanceGpu`] are
/// prepared.
pub struct RenderMeshInstanceGpuBuilder {
/// Data that will be placed on the [`RenderMeshInstanceGpu`].
pub shared: RenderMeshInstanceShared,
/// The current transform.
pub world_from_local: Affine3,
/// Four 16-bit unsigned normalized UV values packed into a [`UVec2`]:
///
/// ```text
/// <--- MSB LSB --->
/// +---- min v ----+ +---- min u ----+
/// lightmap_uv_rect.x: vvvvvvvv vvvvvvvv uuuuuuuu uuuuuuuu,
/// +---- max v ----+ +---- max u ----+
/// lightmap_uv_rect.y: VVVVVVVV VVVVVVVV UUUUUUUU UUUUUUUU,
///
/// (MSB: most significant bit; LSB: least significant bit.)
/// ```
pub lightmap_uv_rect: UVec2,
/// The index of the previous mesh input.
pub previous_input_index: Option<NonMaxU32>,
/// Various flags.
pub mesh_flags: MeshFlags,
}
/// The per-thread queues used during [`extract_meshes_for_gpu_building`].
///
/// There are two varieties of these: one for when culling happens on CPU and
/// one for when culling happens on GPU. Having the two varieties avoids wasting
/// space if GPU culling is disabled.
#[derive(Default)]
pub enum RenderMeshInstanceGpuQueue {
/// The default value.
///
/// This becomes [`RenderMeshInstanceGpuQueue::CpuCulling`] or
/// [`RenderMeshInstanceGpuQueue::GpuCulling`] once extraction starts.
#[default]
None,
/// The version of [`RenderMeshInstanceGpuQueue`] that omits the
/// [`MeshCullingData`], so that we don't waste space when GPU
/// culling is disabled.
CpuCulling(Vec<(Entity, RenderMeshInstanceGpuBuilder)>),
/// The version of [`RenderMeshInstanceGpuQueue`] that contains the
/// [`MeshCullingData`], used when any view has GPU culling
/// enabled.
GpuCulling(Vec<(Entity, RenderMeshInstanceGpuBuilder, MeshCullingData)>),
}
/// The per-thread queues containing mesh instances, populated during the
/// extract phase.
///
/// These are filled in [`extract_meshes_for_gpu_building`] and consumed in
/// [`collect_meshes_for_gpu_building`].
#[derive(Resource, Default, Deref, DerefMut)]
pub struct RenderMeshInstanceGpuQueues(Parallel<RenderMeshInstanceGpuQueue>);
impl RenderMeshInstanceShared {
fn from_components(
previous_transform: Option<&PreviousGlobalTransform>,
handle: &Handle<Mesh>,
not_shadow_caster: bool,
no_automatic_batching: bool,
) -> Self {
let mut mesh_instance_flags = RenderMeshInstanceFlags::empty();
mesh_instance_flags.set(RenderMeshInstanceFlags::SHADOW_CASTER, !not_shadow_caster);
mesh_instance_flags.set(
RenderMeshInstanceFlags::AUTOMATIC_BATCHING,
!no_automatic_batching,
);
mesh_instance_flags.set(
RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM,
previous_transform.is_some(),
);
RenderMeshInstanceShared {
mesh_asset_id: handle.id(),
flags: mesh_instance_flags,
material_bind_group_id: AtomicMaterialBindGroupId::default(),
}
}
/// Returns true if this entity is eligible to participate in automatic
/// batching.
#[inline]
pub fn should_batch(&self) -> bool {
self.flags
.contains(RenderMeshInstanceFlags::AUTOMATIC_BATCHING)
&& self.material_bind_group_id.get().is_some()
}
}
/// Information that the render world keeps about each entity that contains a
/// mesh.
///
/// The set of information needed is different depending on whether CPU or GPU
/// [`MeshUniform`] building is in use.
#[derive(Resource)]
pub enum RenderMeshInstances {
/// Information needed when using CPU mesh instance data building.
CpuBuilding(RenderMeshInstancesCpu),
/// Information needed when using GPU mesh instance data building.
GpuBuilding(RenderMeshInstancesGpu),
}
/// Information that the render world keeps about each entity that contains a
/// mesh, when using CPU mesh instance data building.
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesCpu(EntityHashMap<RenderMeshInstanceCpu>);
/// Information that the render world keeps about each entity that contains a
/// mesh, when using GPU mesh instance data building.
#[derive(Default, Deref, DerefMut)]
pub struct RenderMeshInstancesGpu(EntityHashMap<RenderMeshInstanceGpu>);
impl RenderMeshInstances {
/// Creates a new [`RenderMeshInstances`] instance.
fn new(use_gpu_instance_buffer_builder: bool) -> RenderMeshInstances {
if use_gpu_instance_buffer_builder {
RenderMeshInstances::GpuBuilding(RenderMeshInstancesGpu::default())
} else {
RenderMeshInstances::CpuBuilding(RenderMeshInstancesCpu::default())
}
}
/// Returns the ID of the mesh asset attached to the given entity, if any.
pub(crate) fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => instances.mesh_asset_id(entity),
RenderMeshInstances::GpuBuilding(ref instances) => instances.mesh_asset_id(entity),
}
}
/// Constructs [`RenderMeshQueueData`] for the given entity, if it has a
/// mesh attached.
pub fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
match *self {
RenderMeshInstances::CpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
RenderMeshInstances::GpuBuilding(ref instances) => {
instances.render_mesh_queue_data(entity)
}
}
}
/// Inserts the given flags into the CPU or GPU render mesh instance data
/// for the given mesh as appropriate.
fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
match *self {
RenderMeshInstances::CpuBuilding(ref mut instances) => {
instances.insert_mesh_instance_flags(entity, flags);
}
RenderMeshInstances::GpuBuilding(ref mut instances) => {
instances.insert_mesh_instance_flags(entity, flags);
}
}
}
}
impl RenderMeshInstancesCpu {
fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
self.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
}
fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
self.get(&entity)
.map(|render_mesh_instance| RenderMeshQueueData {
shared: &render_mesh_instance.shared,
translation: render_mesh_instance.transforms.world_from_local.translation,
})
}
/// Inserts the given flags into the render mesh instance data for the given
/// mesh.
fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
if let Some(instance) = self.get_mut(&entity) {
instance.flags.insert(flags);
}
}
}
impl RenderMeshInstancesGpu {
fn mesh_asset_id(&self, entity: Entity) -> Option<AssetId<Mesh>> {
self.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.mesh_asset_id)
}
fn render_mesh_queue_data(&self, entity: Entity) -> Option<RenderMeshQueueData> {
self.get(&entity)
.map(|render_mesh_instance| RenderMeshQueueData {
shared: &render_mesh_instance.shared,
translation: render_mesh_instance.translation,
})
}
/// Inserts the given flags into the render mesh instance data for the given
/// mesh.
fn insert_mesh_instance_flags(&mut self, entity: Entity, flags: RenderMeshInstanceFlags) {
if let Some(instance) = self.get_mut(&entity) {
instance.flags.insert(flags);
}
}
}
impl RenderMeshInstanceGpuQueue {
/// Clears out a [`RenderMeshInstanceGpuQueue`], creating or recreating it
/// as necessary.
///
/// `any_gpu_culling` should be set to true if any view has GPU culling
/// enabled.
fn init(&mut self, any_gpu_culling: bool) {
match (any_gpu_culling, &mut *self) {
(true, RenderMeshInstanceGpuQueue::GpuCulling(queue)) => queue.clear(),
(true, _) => *self = RenderMeshInstanceGpuQueue::GpuCulling(vec![]),
(false, RenderMeshInstanceGpuQueue::CpuCulling(queue)) => queue.clear(),
(false, _) => *self = RenderMeshInstanceGpuQueue::CpuCulling(vec![]),
}
}
/// Adds a new mesh to this queue.
fn push(
&mut self,
entity: Entity,
instance_builder: RenderMeshInstanceGpuBuilder,
culling_data_builder: Option<MeshCullingData>,
) {
match (&mut *self, culling_data_builder) {
(&mut RenderMeshInstanceGpuQueue::CpuCulling(ref mut queue), None) => {
queue.push((entity, instance_builder));
}
(
&mut RenderMeshInstanceGpuQueue::GpuCulling(ref mut queue),
Some(culling_data_builder),
) => {
queue.push((entity, instance_builder, culling_data_builder));
}
(_, None) => {
*self = RenderMeshInstanceGpuQueue::CpuCulling(vec![(entity, instance_builder)]);
}
(_, Some(culling_data_builder)) => {
*self = RenderMeshInstanceGpuQueue::GpuCulling(vec![(
entity,
instance_builder,
culling_data_builder,
)]);
}
}
}
}
impl RenderMeshInstanceGpuBuilder {
/// Flushes this mesh instance to the [`RenderMeshInstanceGpu`] and
/// [`MeshInputUniform`] tables.
fn add_to(
self,
entity: Entity,
render_mesh_instances: &mut EntityHashMap<RenderMeshInstanceGpu>,
current_input_buffer: &mut RawBufferVec<MeshInputUniform>,
mesh_allocator: &MeshAllocator,
) -> usize {
let first_vertex_index = match mesh_allocator.mesh_vertex_slice(&self.shared.mesh_asset_id)
{
Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
None => 0,
};
// Push the mesh input uniform.
let current_uniform_index = current_input_buffer.push(MeshInputUniform {
world_from_local: self.world_from_local.to_transpose(),
lightmap_uv_rect: self.lightmap_uv_rect,
flags: self.mesh_flags.bits(),
previous_input_index: match self.previous_input_index {
Some(previous_input_index) => previous_input_index.into(),
None => u32::MAX,
},
first_vertex_index,
pad_a: 0,
pad_b: 0,
pad_c: 0,
});
// Record the [`RenderMeshInstance`].
render_mesh_instances.insert(
entity,
RenderMeshInstanceGpu {
translation: self.world_from_local.translation,
shared: self.shared,
current_uniform_index: (current_uniform_index as u32)
.try_into()
.unwrap_or_default(),
},
);
current_uniform_index
}
}
impl MeshCullingData {
/// Returns a new [`MeshCullingData`] initialized with the given AABB.
///
/// If no AABB is provided, an infinitely-large one is conservatively
/// chosen.
fn new(aabb: Option<&Aabb>) -> Self {
match aabb {
Some(aabb) => MeshCullingData {
aabb_center: aabb.center.extend(0.0),
aabb_half_extents: aabb.half_extents.extend(0.0),
},
None => MeshCullingData {
aabb_center: Vec3::ZERO.extend(0.0),
aabb_half_extents: Vec3::INFINITY.extend(0.0),
},
}
}
/// Flushes this mesh instance culling data to the
/// [`MeshCullingDataBuffer`].
fn add_to(&self, mesh_culling_data_buffer: &mut MeshCullingDataBuffer) -> usize {
mesh_culling_data_buffer.push(*self)
}
}
impl Default for MeshCullingDataBuffer {
#[inline]
fn default() -> Self {
Self(RawBufferVec::new(BufferUsages::STORAGE))
}
}
/// Data that [`crate::material::queue_material_meshes`] and similar systems
/// need in order to place entities that contain meshes in the right batch.
#[derive(Deref)]
pub struct RenderMeshQueueData<'a> {
/// General information about the mesh instance.
#[deref]
pub shared: &'a RenderMeshInstanceShared,
/// The translation of the mesh instance.
pub translation: Vec3,
}
/// A [`SystemSet`] that encompasses both [`extract_meshes_for_cpu_building`]
/// and [`extract_meshes_for_gpu_building`].
#[derive(SystemSet, Clone, PartialEq, Eq, Debug, Hash)]
pub struct ExtractMeshesSet;
/// Extracts meshes from the main world into the render world, populating the
/// [`RenderMeshInstances`].
///
/// This is the variant of the system that runs when we're *not* using GPU
/// [`MeshUniform`] building.
pub fn extract_meshes_for_cpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut render_mesh_instance_queues: Local<Parallel<Vec<(Entity, RenderMeshInstanceCpu)>>>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
&Handle<Mesh>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
Has<VisibilityRange>,
)>,
>,
) {
meshes_query.par_iter().for_each_init(
|| render_mesh_instance_queues.borrow_local_mut(),
|queue,
(
entity,
view_visibility,
transform,
previous_transform,
handle,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
visibility_range,
)| {
if !view_visibility.get() {
return;
}
let mut lod_index = None;
if visibility_range {
lod_index = render_visibility_ranges.lod_index_for_entity(entity);
}
let mesh_flags = MeshFlags::from_components(
transform,
lod_index,
not_shadow_receiver,
transmitted_receiver,
);
let shared = RenderMeshInstanceShared::from_components(
previous_transform,
handle,
not_shadow_caster,
no_automatic_batching,
);
let world_from_local = transform.affine();
queue.push((
entity,
RenderMeshInstanceCpu {
transforms: MeshTransforms {
world_from_local: (&world_from_local).into(),
previous_world_from_local: (&previous_transform
.map(|t| t.0)
.unwrap_or(world_from_local))
.into(),
flags: mesh_flags.bits(),
},
shared,
},
));
},
);
// Collect the render mesh instances.
let RenderMeshInstances::CpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`extract_meshes_for_cpu_building` should only be called if we're using CPU \
`MeshUniform` building"
);
};
render_mesh_instances.clear();
for queue in render_mesh_instance_queues.iter_mut() {
for (entity, render_mesh_instance) in queue.drain(..) {
render_mesh_instances.insert_unique_unchecked(entity, render_mesh_instance);
}
}
}
/// Extracts meshes from the main world into the render world and queues
/// [`MeshInputUniform`]s to be uploaded to the GPU.
///
/// This is the variant of the system that runs when we're using GPU
/// [`MeshUniform`] building.
pub fn extract_meshes_for_gpu_building(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
render_visibility_ranges: Res<RenderVisibilityRanges>,
mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
meshes_query: Extract<
Query<(
Entity,
&ViewVisibility,
&GlobalTransform,
Option<&PreviousGlobalTransform>,
Option<&Lightmap>,
Option<&Aabb>,
&Handle<Mesh>,
Has<NotShadowReceiver>,
Has<TransmittedShadowReceiver>,
Has<NotShadowCaster>,
Has<NoAutomaticBatching>,
Has<VisibilityRange>,
)>,
>,
cameras_query: Extract<Query<(), (With<Camera>, With<GpuCulling>)>>,
) {
let any_gpu_culling = !cameras_query.is_empty();
for render_mesh_instance_queue in render_mesh_instance_queues.iter_mut() {
render_mesh_instance_queue.init(any_gpu_culling);
}
// Collect render mesh instances. Build up the uniform buffer.
let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) = *render_mesh_instances
else {
panic!(
"`extract_meshes_for_gpu_building` should only be called if we're \
using GPU `MeshUniform` building"
);
};
meshes_query.par_iter().for_each_init(
|| render_mesh_instance_queues.borrow_local_mut(),
|queue,
(
entity,
view_visibility,
transform,
previous_transform,
lightmap,
aabb,
handle,
not_shadow_receiver,
transmitted_receiver,
not_shadow_caster,
no_automatic_batching,
visibility_range,
)| {
if !view_visibility.get() {
return;
}
let mut lod_index = None;
if visibility_range {
lod_index = render_visibility_ranges.lod_index_for_entity(entity);
}
let mesh_flags = MeshFlags::from_components(
transform,
lod_index,
not_shadow_receiver,
transmitted_receiver,
);
let shared = RenderMeshInstanceShared::from_components(
previous_transform,
handle,
not_shadow_caster,
no_automatic_batching,
);
let lightmap_uv_rect = pack_lightmap_uv_rect(lightmap.map(|lightmap| lightmap.uv_rect));
let gpu_mesh_culling_data = any_gpu_culling.then(|| MeshCullingData::new(aabb));
let previous_input_index = if shared
.flags
.contains(RenderMeshInstanceFlags::HAS_PREVIOUS_TRANSFORM)
{
render_mesh_instances
.get(&entity)
.map(|render_mesh_instance| render_mesh_instance.current_uniform_index)
} else {
None
};
let gpu_mesh_instance_builder = RenderMeshInstanceGpuBuilder {
shared,
world_from_local: (&transform.affine()).into(),
lightmap_uv_rect,
mesh_flags,
previous_input_index,
};
queue.push(entity, gpu_mesh_instance_builder, gpu_mesh_culling_data);
},
);
}
/// A system that sets the [`RenderMeshInstanceFlags`] for each mesh based on
/// whether the previous frame had skins and/or morph targets.
///
/// Ordinarily, [`RenderMeshInstanceFlags`] are set during the extraction phase.
/// However, we can't do that for the flags related to skins and morph targets
/// because the previous frame's skin and morph targets are the responsibility
/// of [`extract_skins`] and [`extract_morphs`] respectively. We want to run
/// those systems in parallel with mesh extraction for performance, so we need
/// to defer setting of these mesh instance flags to after extraction, which
/// this system does. An alternative to having skin- and morph-target-related
/// data in [`RenderMeshInstanceFlags`] would be to have
/// [`crate::material::queue_material_meshes`] check the skin and morph target
/// tables for each mesh, but that would be too slow in the hot mesh queuing
/// loop.
fn set_mesh_motion_vector_flags(
mut render_mesh_instances: ResMut<RenderMeshInstances>,
skin_indices: Res<SkinIndices>,
morph_indices: Res<MorphIndices>,
) {
for &entity in skin_indices.prev.keys() {
render_mesh_instances
.insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_SKIN);
}
for &entity in morph_indices.prev.keys() {
render_mesh_instances
.insert_mesh_instance_flags(entity, RenderMeshInstanceFlags::HAS_PREVIOUS_MORPH);
}
}
/// Creates the [`RenderMeshInstanceGpu`]s and [`MeshInputUniform`]s when GPU
/// mesh uniforms are built.
pub fn collect_meshes_for_gpu_building(
render_mesh_instances: ResMut<RenderMeshInstances>,
batched_instance_buffers: ResMut<
gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>,
>,
mut mesh_culling_data_buffer: ResMut<MeshCullingDataBuffer>,
mut render_mesh_instance_queues: ResMut<RenderMeshInstanceGpuQueues>,
mesh_allocator: Res<MeshAllocator>,
) {
let RenderMeshInstances::GpuBuilding(ref mut render_mesh_instances) =
render_mesh_instances.into_inner()
else {
return;
};
// Collect render mesh instances. Build up the uniform buffer.
let gpu_preprocessing::BatchedInstanceBuffers {
ref mut current_input_buffer,
ref mut previous_input_buffer,
..
} = batched_instance_buffers.into_inner();
// Swap buffers.
mem::swap(current_input_buffer, previous_input_buffer);
// Build the [`RenderMeshInstance`]s and [`MeshInputUniform`]s.
render_mesh_instances.clear();
for queue in render_mesh_instance_queues.iter_mut() {
match *queue {
RenderMeshInstanceGpuQueue::None => {
// This can only happen if the queue is empty.
}
RenderMeshInstanceGpuQueue::CpuCulling(ref mut queue) => {
for (entity, mesh_instance_builder) in queue.drain(..) {
mesh_instance_builder.add_to(
entity,
&mut *render_mesh_instances,
current_input_buffer,
&mesh_allocator,
);
}
}
RenderMeshInstanceGpuQueue::GpuCulling(ref mut queue) => {
for (entity, mesh_instance_builder, mesh_culling_builder) in queue.drain(..) {
let instance_data_index = mesh_instance_builder.add_to(
entity,
&mut *render_mesh_instances,
current_input_buffer,
&mesh_allocator,
);
let culling_data_index =
mesh_culling_builder.add_to(&mut mesh_culling_data_buffer);
debug_assert_eq!(instance_data_index, culling_data_index);
}
}
}
}
}
/// All data needed to construct a pipeline for rendering 3D meshes.
#[derive(Resource, Clone)]
pub struct MeshPipeline {
/// A reference to all the mesh pipeline view layouts.
pub view_layouts: MeshPipelineViewLayouts,
// This dummy white texture is to be used in place of optional StandardMaterial textures
pub dummy_white_gpu_image: GpuImage,
pub clustered_forward_buffer_binding_type: BufferBindingType,
pub mesh_layouts: MeshLayouts,
/// `MeshUniform`s are stored in arrays in buffers. If storage buffers are available, they
/// are used and this will be `None`, otherwise uniform buffers will be used with batches
/// of this many `MeshUniform`s, stored at dynamic offsets within the uniform buffer.
/// Use code like this in custom shaders:
/// ```wgsl
/// ##ifdef PER_OBJECT_BUFFER_BATCH_SIZE
/// @group(1) @binding(0) var<uniform> mesh: array<Mesh, #{PER_OBJECT_BUFFER_BATCH_SIZE}u>;
/// ##else
/// @group(1) @binding(0) var<storage> mesh: array<Mesh>;
/// ##endif // PER_OBJECT_BUFFER_BATCH_SIZE
/// ```
pub per_object_buffer_batch_size: Option<u32>,
/// Whether binding arrays (a.k.a. bindless textures) are usable on the
/// current render device.
///
/// This affects whether reflection probes can be used.
pub binding_arrays_are_usable: bool,
}
impl FromWorld for MeshPipeline {
fn from_world(world: &mut World) -> Self {
let mut system_state: SystemState<(
Res<RenderDevice>,
Res<DefaultImageSampler>,
Res<RenderQueue>,
Res<MeshPipelineViewLayouts>,
)> = SystemState::new(world);
let (render_device, default_sampler, render_queue, view_layouts) =
system_state.get_mut(world);
let clustered_forward_buffer_binding_type = render_device
.get_supported_read_only_binding_type(CLUSTERED_FORWARD_STORAGE_BUFFER_COUNT);
// A 1x1x1 'all 1.0' texture to use as a dummy texture to use in place of optional StandardMaterial textures
let dummy_white_gpu_image = {
let image = Image::default();
let texture = render_device.create_texture(&image.texture_descriptor);
let sampler = match image.sampler {
ImageSampler::Default => (**default_sampler).clone(),
ImageSampler::Descriptor(ref descriptor) => {
render_device.create_sampler(&descriptor.as_wgpu())
}
};
let format_size = image.texture_descriptor.format.pixel_size();
render_queue.write_texture(
texture.as_image_copy(),
&image.data,
ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * format_size as u32),
rows_per_image: None,
},
image.texture_descriptor.size,
);
let texture_view = texture.create_view(&TextureViewDescriptor::default());
GpuImage {
texture,
texture_view,
texture_format: image.texture_descriptor.format,
sampler,
size: image.size(),
mip_level_count: image.texture_descriptor.mip_level_count,
}
};
MeshPipeline {
view_layouts: view_layouts.clone(),
clustered_forward_buffer_binding_type,
dummy_white_gpu_image,
mesh_layouts: MeshLayouts::new(&render_device),
per_object_buffer_batch_size: GpuArrayBuffer::<MeshUniform>::batch_size(&render_device),
binding_arrays_are_usable: binding_arrays_are_usable(&render_device),
}
}
}
impl MeshPipeline {
pub fn get_image_texture<'a>(
&'a self,
gpu_images: &'a RenderAssets<GpuImage>,
handle_option: &Option<Handle<Image>>,
) -> Option<(&'a TextureView, &'a Sampler)> {
if let Some(handle) = handle_option {
let gpu_image = gpu_images.get(handle)?;
Some((&gpu_image.texture_view, &gpu_image.sampler))
} else {
Some((
&self.dummy_white_gpu_image.texture_view,
&self.dummy_white_gpu_image.sampler,
))
}
}
pub fn get_view_layout(&self, layout_key: MeshPipelineViewLayoutKey) -> &BindGroupLayout {
self.view_layouts.get_view_layout(layout_key)
}
}
impl GetBatchData for MeshPipeline {
type Param = (
SRes<RenderMeshInstances>,
SRes<RenderLightmaps>,
SRes<RenderAssets<RenderMesh>>,
SRes<MeshAllocator>,
);
// The material bind group ID, the mesh ID, and the lightmap ID,
// respectively.
type CompareData = (MaterialBindGroupId, AssetId<Mesh>, Option<AssetId<Image>>);
type BufferData = MeshUniform;
fn get_batch_data(
(mesh_instances, lightmaps, _, mesh_allocator): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<(Self::BufferData, Option<Self::CompareData>)> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_batch_data` should never be called in GPU mesh uniform \
building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let first_vertex_index =
match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
None => 0,
};
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some((
MeshUniform::new(
&mesh_instance.transforms,
first_vertex_index,
maybe_lightmap.map(|lightmap| lightmap.uv_rect),
),
mesh_instance.should_batch().then_some((
mesh_instance.material_bind_group_id.get(),
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.image),
)),
))
}
}
impl GetFullBatchData for MeshPipeline {
type BufferInputData = MeshInputUniform;
fn get_index_and_compare_data(
(mesh_instances, lightmaps, _, _): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<(NonMaxU32, Option<Self::CompareData>)> {
// This should only be called during GPU building.
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_index_and_compare_data` should never be called in CPU mesh uniform building \
mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some((
mesh_instance.current_uniform_index,
mesh_instance.should_batch().then_some((
mesh_instance.material_bind_group_id.get(),
mesh_instance.mesh_asset_id,
maybe_lightmap.map(|lightmap| lightmap.image),
)),
))
}
fn get_binned_batch_data(
(mesh_instances, lightmaps, _, mesh_allocator): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<Self::BufferData> {
let RenderMeshInstances::CpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_batch_data` should never be called in GPU mesh uniform building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let first_vertex_index =
match mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id) {
Some(mesh_vertex_slice) => mesh_vertex_slice.range.start,
None => 0,
};
let maybe_lightmap = lightmaps.render_lightmaps.get(&entity);
Some(MeshUniform::new(
&mesh_instance.transforms,
first_vertex_index,
maybe_lightmap.map(|lightmap| lightmap.uv_rect),
))
}
fn get_binned_index(
(mesh_instances, _, _, _): &SystemParamItem<Self::Param>,
entity: Entity,
) -> Option<NonMaxU32> {
// This should only be called during GPU building.
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = **mesh_instances else {
error!(
"`get_binned_index` should never be called in CPU mesh uniform \
building mode"
);
return None;
};
mesh_instances
.get(&entity)
.map(|entity| entity.current_uniform_index)
}
fn get_batch_indirect_parameters_index(
(mesh_instances, _, meshes, mesh_allocator): &SystemParamItem<Self::Param>,
indirect_parameters_buffer: &mut IndirectParametersBuffer,
entity: Entity,
instance_index: u32,
) -> Option<NonMaxU32> {
get_batch_indirect_parameters_index(
mesh_instances,
meshes,
mesh_allocator,
indirect_parameters_buffer,
entity,
instance_index,
)
}
}
/// Pushes a set of [`IndirectParameters`] onto the [`IndirectParametersBuffer`]
/// for the given mesh instance, and returns the index of those indirect
/// parameters.
fn get_batch_indirect_parameters_index(
mesh_instances: &RenderMeshInstances,
meshes: &RenderAssets<RenderMesh>,
mesh_allocator: &MeshAllocator,
indirect_parameters_buffer: &mut IndirectParametersBuffer,
entity: Entity,
instance_index: u32,
) -> Option<NonMaxU32> {
// This should only be called during GPU building.
let RenderMeshInstances::GpuBuilding(ref mesh_instances) = *mesh_instances else {
error!(
"`get_batch_indirect_parameters_index` should never be called in CPU mesh uniform \
building mode"
);
return None;
};
let mesh_instance = mesh_instances.get(&entity)?;
let mesh = meshes.get(mesh_instance.mesh_asset_id)?;
let vertex_buffer_slice = mesh_allocator.mesh_vertex_slice(&mesh_instance.mesh_asset_id)?;
// Note that `IndirectParameters` covers both of these structures, even
// though they actually have distinct layouts. See the comment above that
// type for more information.
let indirect_parameters = match mesh.buffer_info {
RenderMeshBufferInfo::Indexed {
count: index_count, ..
} => {
let index_buffer_slice =
mesh_allocator.mesh_index_slice(&mesh_instance.mesh_asset_id)?;
IndirectParameters {
vertex_or_index_count: index_count,
instance_count: 0,
first_vertex_or_first_index: index_buffer_slice.range.start,
base_vertex_or_first_instance: vertex_buffer_slice.range.start,
first_instance: instance_index,
}
}
RenderMeshBufferInfo::NonIndexed => IndirectParameters {
vertex_or_index_count: mesh.vertex_count,
instance_count: 0,
first_vertex_or_first_index: vertex_buffer_slice.range.start,
base_vertex_or_first_instance: instance_index,
first_instance: instance_index,
},
};
(indirect_parameters_buffer.push(indirect_parameters) as u32)
.try_into()
.ok()
}
bitflags::bitflags! {
#[derive(Clone, Copy, Debug, PartialEq, Eq, Hash)]
#[repr(transparent)]
// NOTE: Apparently quadro drivers support up to 64x MSAA.
/// MSAA uses the highest 3 bits for the MSAA log2(sample count) to support up to 128x MSAA.
pub struct MeshPipelineKey: u64 {
// Nothing
const NONE = 0;
// Inherited bits
const MORPH_TARGETS = BaseMeshPipelineKey::MORPH_TARGETS.bits();
// Flag bits
const HDR = 1 << 0;
const TONEMAP_IN_SHADER = 1 << 1;
const DEBAND_DITHER = 1 << 2;
const DEPTH_PREPASS = 1 << 3;
const NORMAL_PREPASS = 1 << 4;
const DEFERRED_PREPASS = 1 << 5;
const MOTION_VECTOR_PREPASS = 1 << 6;
const MAY_DISCARD = 1 << 7; // Guards shader codepaths that may discard, allowing early depth tests in most cases
// See: https://www.khronos.org/opengl/wiki/Early_Fragment_Test
const ENVIRONMENT_MAP = 1 << 8;
const SCREEN_SPACE_AMBIENT_OCCLUSION = 1 << 9;
const DEPTH_CLAMP_ORTHO = 1 << 10;
const TEMPORAL_JITTER = 1 << 11;
const READS_VIEW_TRANSMISSION_TEXTURE = 1 << 12;
const LIGHTMAPPED = 1 << 13;
const IRRADIANCE_VOLUME = 1 << 14;
const VISIBILITY_RANGE_DITHER = 1 << 15;
const SCREEN_SPACE_REFLECTIONS = 1 << 16;
const HAS_PREVIOUS_SKIN = 1 << 17;
const HAS_PREVIOUS_MORPH = 1 << 18;
const LAST_FLAG = Self::HAS_PREVIOUS_MORPH.bits();
// Bitfields
const MSAA_RESERVED_BITS = Self::MSAA_MASK_BITS << Self::MSAA_SHIFT_BITS;
const BLEND_RESERVED_BITS = Self::BLEND_MASK_BITS << Self::BLEND_SHIFT_BITS; // ← Bitmask reserving bits for the blend state
const BLEND_OPAQUE = 0 << Self::BLEND_SHIFT_BITS; // ← Values are just sequential within the mask
const BLEND_PREMULTIPLIED_ALPHA = 1 << Self::BLEND_SHIFT_BITS; // ← As blend states is on 3 bits, it can range from 0 to 7
const BLEND_MULTIPLY = 2 << Self::BLEND_SHIFT_BITS; // ← See `BLEND_MASK_BITS` for the number of bits available
const BLEND_ALPHA = 3 << Self::BLEND_SHIFT_BITS; //
const BLEND_ALPHA_TO_COVERAGE = 4 << Self::BLEND_SHIFT_BITS; // ← We still have room for three more values without adding more bits
const TONEMAP_METHOD_RESERVED_BITS = Self::TONEMAP_METHOD_MASK_BITS << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_NONE = 0 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD = 1 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_REINHARD_LUMINANCE = 2 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_ACES_FITTED = 3 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_AGX = 4 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM = 5 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_TONY_MC_MAPFACE = 6 << Self::TONEMAP_METHOD_SHIFT_BITS;
const TONEMAP_METHOD_BLENDER_FILMIC = 7 << Self::TONEMAP_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_RESERVED_BITS = Self::SHADOW_FILTER_METHOD_MASK_BITS << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_HARDWARE_2X2 = 0 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_GAUSSIAN = 1 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SHADOW_FILTER_METHOD_TEMPORAL = 2 << Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED_BITS = Self::VIEW_PROJECTION_MASK_BITS << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_NONSTANDARD = 0 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_PERSPECTIVE = 1 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_ORTHOGRAPHIC = 2 << Self::VIEW_PROJECTION_SHIFT_BITS;
const VIEW_PROJECTION_RESERVED = 3 << Self::VIEW_PROJECTION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS = Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW = 0 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM = 1 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH = 2 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA = 3 << Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS;
const ALL_RESERVED_BITS =
Self::BLEND_RESERVED_BITS.bits() |
Self::MSAA_RESERVED_BITS.bits() |
Self::TONEMAP_METHOD_RESERVED_BITS.bits() |
Self::SHADOW_FILTER_METHOD_RESERVED_BITS.bits() |
Self::VIEW_PROJECTION_RESERVED_BITS.bits() |
Self::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS.bits();
}
}
impl MeshPipelineKey {
const MSAA_MASK_BITS: u64 = 0b111;
const MSAA_SHIFT_BITS: u64 = Self::LAST_FLAG.bits().trailing_zeros() as u64 + 1;
const BLEND_MASK_BITS: u64 = 0b111;
const BLEND_SHIFT_BITS: u64 = Self::MSAA_MASK_BITS.count_ones() as u64 + Self::MSAA_SHIFT_BITS;
const TONEMAP_METHOD_MASK_BITS: u64 = 0b111;
const TONEMAP_METHOD_SHIFT_BITS: u64 =
Self::BLEND_MASK_BITS.count_ones() as u64 + Self::BLEND_SHIFT_BITS;
const SHADOW_FILTER_METHOD_MASK_BITS: u64 = 0b11;
const SHADOW_FILTER_METHOD_SHIFT_BITS: u64 =
Self::TONEMAP_METHOD_MASK_BITS.count_ones() as u64 + Self::TONEMAP_METHOD_SHIFT_BITS;
const VIEW_PROJECTION_MASK_BITS: u64 = 0b11;
const VIEW_PROJECTION_SHIFT_BITS: u64 = Self::SHADOW_FILTER_METHOD_MASK_BITS.count_ones()
as u64
+ Self::SHADOW_FILTER_METHOD_SHIFT_BITS;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_MASK_BITS: u64 = 0b11;
const SCREEN_SPACE_SPECULAR_TRANSMISSION_SHIFT_BITS: u64 =
Self::VIEW_PROJECTION_MASK_BITS.count_ones() as u64 + Self::VIEW_PROJECTION_SHIFT_BITS;
pub fn from_msaa_samples(msaa_samples: u32) -> Self {
let msaa_bits =
(msaa_samples.trailing_zeros() as u64 & Self::MSAA_MASK_BITS) << Self::MSAA_SHIFT_BITS;
Self::from_bits_retain(msaa_bits)
}
pub fn from_hdr(hdr: bool) -> Self {
if hdr {
MeshPipelineKey::HDR
} else {
MeshPipelineKey::NONE
}
}
pub fn msaa_samples(&self) -> u32 {
1 << ((self.bits() >> Self::MSAA_SHIFT_BITS) & Self::MSAA_MASK_BITS)
}
pub fn from_primitive_topology(primitive_topology: PrimitiveTopology) -> Self {
let primitive_topology_bits = ((primitive_topology as u64)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS)
<< BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS;
Self::from_bits_retain(primitive_topology_bits)
}
pub fn primitive_topology(&self) -> PrimitiveTopology {
let primitive_topology_bits = (self.bits()
>> BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS;
match primitive_topology_bits {
x if x == PrimitiveTopology::PointList as u64 => PrimitiveTopology::PointList,
x if x == PrimitiveTopology::LineList as u64 => PrimitiveTopology::LineList,
x if x == PrimitiveTopology::LineStrip as u64 => PrimitiveTopology::LineStrip,
x if x == PrimitiveTopology::TriangleList as u64 => PrimitiveTopology::TriangleList,
x if x == PrimitiveTopology::TriangleStrip as u64 => PrimitiveTopology::TriangleStrip,
_ => PrimitiveTopology::default(),
}
}
}
// Ensure that we didn't overflow the number of bits available in `MeshPipelineKey`.
const_assert_eq!(
(((MeshPipelineKey::LAST_FLAG.bits() << 1) - 1) | MeshPipelineKey::ALL_RESERVED_BITS.bits())
& BaseMeshPipelineKey::all().bits(),
0
);
// Ensure that the reserved bits don't overlap with the topology bits
const_assert_eq!(
(BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_MASK_BITS
<< BaseMeshPipelineKey::PRIMITIVE_TOPOLOGY_SHIFT_BITS)
& MeshPipelineKey::ALL_RESERVED_BITS.bits(),
0
);
fn is_skinned(layout: &MeshVertexBufferLayoutRef) -> bool {
layout.0.contains(Mesh::ATTRIBUTE_JOINT_INDEX)
&& layout.0.contains(Mesh::ATTRIBUTE_JOINT_WEIGHT)
}
pub fn setup_morph_and_skinning_defs(
mesh_layouts: &MeshLayouts,
layout: &MeshVertexBufferLayoutRef,
offset: u32,
key: &MeshPipelineKey,
shader_defs: &mut Vec<ShaderDefVal>,
vertex_attributes: &mut Vec<VertexAttributeDescriptor>,
) -> BindGroupLayout {
let mut add_skin_data = || {
shader_defs.push("SKINNED".into());
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_INDEX.at_shader_location(offset));
vertex_attributes.push(Mesh::ATTRIBUTE_JOINT_WEIGHT.at_shader_location(offset + 1));
};
let is_morphed = key.intersects(MeshPipelineKey::MORPH_TARGETS);
let is_lightmapped = key.intersects(MeshPipelineKey::LIGHTMAPPED);
let motion_vector_prepass = key.intersects(MeshPipelineKey::MOTION_VECTOR_PREPASS);
match (
is_skinned(layout),
is_morphed,
is_lightmapped,
motion_vector_prepass,
) {
(true, false, _, true) => {
add_skin_data();
mesh_layouts.skinned_motion.clone()
}
(true, false, _, false) => {
add_skin_data();
mesh_layouts.skinned.clone()
}
(true, true, _, true) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned_motion.clone()
}
(true, true, _, false) => {
add_skin_data();
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_skinned.clone()
}
(false, true, _, true) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed_motion.clone()
}
(false, true, _, false) => {
shader_defs.push("MORPH_TARGETS".into());
mesh_layouts.morphed.clone()
}
(false, false, true, _) => mesh_layouts.lightmapped.clone(),
(false, false, false, _) => mesh_layouts.model_only.clone(),
}
}
impl SpecializedMeshPipeline for MeshPipeline {
type Key = MeshPipelineKey;
fn specialize(
&self,
key: Self::Key,
layout: &MeshVertexBufferLayoutRef,
) -> Result<RenderPipelineDescriptor, SpecializedMeshPipelineError> {
let mut shader_defs = Vec::new();
let mut vertex_attributes = Vec::new();
// Let the shader code know that it's running in a mesh pipeline.
shader_defs.push("MESH_PIPELINE".into());
shader_defs.push("VERTEX_OUTPUT_INSTANCE_INDEX".into());
if layout.0.contains(Mesh::ATTRIBUTE_POSITION) {
shader_defs.push("VERTEX_POSITIONS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_POSITION.at_shader_location(0));
}
if layout.0.contains(Mesh::ATTRIBUTE_NORMAL) {
shader_defs.push("VERTEX_NORMALS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_NORMAL.at_shader_location(1));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_0) {
shader_defs.push("VERTEX_UVS".into());
shader_defs.push("VERTEX_UVS_A".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_0.at_shader_location(2));
}
if layout.0.contains(Mesh::ATTRIBUTE_UV_1) {
shader_defs.push("VERTEX_UVS".into());
shader_defs.push("VERTEX_UVS_B".into());
vertex_attributes.push(Mesh::ATTRIBUTE_UV_1.at_shader_location(3));
}
if layout.0.contains(Mesh::ATTRIBUTE_TANGENT) {
shader_defs.push("VERTEX_TANGENTS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_TANGENT.at_shader_location(4));
}
if layout.0.contains(Mesh::ATTRIBUTE_COLOR) {
shader_defs.push("VERTEX_COLORS".into());
vertex_attributes.push(Mesh::ATTRIBUTE_COLOR.at_shader_location(5));
}
if cfg!(feature = "pbr_transmission_textures") {
shader_defs.push("PBR_TRANSMISSION_TEXTURES_SUPPORTED".into());
}
if cfg!(feature = "pbr_multi_layer_material_textures") {
shader_defs.push("PBR_MULTI_LAYER_MATERIAL_TEXTURES_SUPPORTED".into());
}
if cfg!(feature = "pbr_anisotropy_texture") {
shader_defs.push("PBR_ANISOTROPY_TEXTURE_SUPPORTED".into());
}
let mut bind_group_layout = vec![self.get_view_layout(key.into()).clone()];
if key.msaa_samples() > 1 {
shader_defs.push("MULTISAMPLED".into());
};
bind_group_layout.push(setup_morph_and_skinning_defs(
&self.mesh_layouts,
layout,
6,
&key,
&mut shader_defs,
&mut vertex_attributes,
));
if key.contains(MeshPipelineKey::SCREEN_SPACE_AMBIENT_OCCLUSION) {
shader_defs.push("SCREEN_SPACE_AMBIENT_OCCLUSION".into());
}
let vertex_buffer_layout = layout.0.get_layout(&vertex_attributes)?;
let (label, blend, depth_write_enabled);
let pass = key.intersection(MeshPipelineKey::BLEND_RESERVED_BITS);
let (mut is_opaque, mut alpha_to_coverage_enabled) = (false, false);
if pass == MeshPipelineKey::BLEND_ALPHA {
label = "alpha_blend_mesh_pipeline".into();
blend = Some(BlendState::ALPHA_BLENDING);
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_PREMULTIPLIED_ALPHA {
label = "premultiplied_alpha_mesh_pipeline".into();
blend = Some(BlendState::PREMULTIPLIED_ALPHA_BLENDING);
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_PREMULTIPLIED_ALPHA".into());
// For the transparent pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_MULTIPLY {
label = "multiply_mesh_pipeline".into();
blend = Some(BlendState {
color: BlendComponent {
src_factor: BlendFactor::Dst,
dst_factor: BlendFactor::OneMinusSrcAlpha,
operation: BlendOperation::Add,
},
alpha: BlendComponent::OVER,
});
shader_defs.push("PREMULTIPLY_ALPHA".into());
shader_defs.push("BLEND_MULTIPLY".into());
// For the multiply pass, fragments that are closer will be alpha blended
// but their depth is not written to the depth buffer
depth_write_enabled = false;
} else if pass == MeshPipelineKey::BLEND_ALPHA_TO_COVERAGE {
label = "alpha_to_coverage_mesh_pipeline".into();
// BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
blend = None;
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
alpha_to_coverage_enabled = true;
shader_defs.push("ALPHA_TO_COVERAGE".into());
} else {
label = "opaque_mesh_pipeline".into();
// BlendState::REPLACE is not needed here, and None will be potentially much faster in some cases
blend = None;
// For the opaque and alpha mask passes, fragments that are closer will replace
// the current fragment value in the output and the depth is written to the
// depth buffer
depth_write_enabled = true;
is_opaque = !key.contains(MeshPipelineKey::READS_VIEW_TRANSMISSION_TEXTURE);
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) {
shader_defs.push("NORMAL_PREPASS".into());
}
if key.contains(MeshPipelineKey::DEPTH_PREPASS) {
shader_defs.push("DEPTH_PREPASS".into());
}
if key.contains(MeshPipelineKey::MOTION_VECTOR_PREPASS) {
shader_defs.push("MOTION_VECTOR_PREPASS".into());
}
if key.contains(MeshPipelineKey::HAS_PREVIOUS_SKIN) {
shader_defs.push("HAS_PREVIOUS_SKIN".into());
}
if key.contains(MeshPipelineKey::HAS_PREVIOUS_MORPH) {
shader_defs.push("HAS_PREVIOUS_MORPH".into());
}
if key.contains(MeshPipelineKey::DEFERRED_PREPASS) {
shader_defs.push("DEFERRED_PREPASS".into());
}
if key.contains(MeshPipelineKey::NORMAL_PREPASS) && key.msaa_samples() == 1 && is_opaque {
shader_defs.push("LOAD_PREPASS_NORMALS".into());
}
let view_projection = key.intersection(MeshPipelineKey::VIEW_PROJECTION_RESERVED_BITS);
if view_projection == MeshPipelineKey::VIEW_PROJECTION_NONSTANDARD {
shader_defs.push("VIEW_PROJECTION_NONSTANDARD".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_PERSPECTIVE {
shader_defs.push("VIEW_PROJECTION_PERSPECTIVE".into());
} else if view_projection == MeshPipelineKey::VIEW_PROJECTION_ORTHOGRAPHIC {
shader_defs.push("VIEW_PROJECTION_ORTHOGRAPHIC".into());
}
#[cfg(all(feature = "webgl", target_arch = "wasm32", not(feature = "webgpu")))]
shader_defs.push("WEBGL2".into());
if key.contains(MeshPipelineKey::TONEMAP_IN_SHADER) {
shader_defs.push("TONEMAP_IN_SHADER".into());
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_TEXTURE_BINDING_INDEX".into(),
23,
));
shader_defs.push(ShaderDefVal::UInt(
"TONEMAPPING_LUT_SAMPLER_BINDING_INDEX".into(),
24,
));
let method = key.intersection(MeshPipelineKey::TONEMAP_METHOD_RESERVED_BITS);
if method == MeshPipelineKey::TONEMAP_METHOD_NONE {
shader_defs.push("TONEMAP_METHOD_NONE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD {
shader_defs.push("TONEMAP_METHOD_REINHARD".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_REINHARD_LUMINANCE {
shader_defs.push("TONEMAP_METHOD_REINHARD_LUMINANCE".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_ACES_FITTED {
shader_defs.push("TONEMAP_METHOD_ACES_FITTED".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_AGX {
shader_defs.push("TONEMAP_METHOD_AGX".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM {
shader_defs.push("TONEMAP_METHOD_SOMEWHAT_BORING_DISPLAY_TRANSFORM".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_BLENDER_FILMIC {
shader_defs.push("TONEMAP_METHOD_BLENDER_FILMIC".into());
} else if method == MeshPipelineKey::TONEMAP_METHOD_TONY_MC_MAPFACE {
shader_defs.push("TONEMAP_METHOD_TONY_MC_MAPFACE".into());
}
// Debanding is tied to tonemapping in the shader, cannot run without it.
if key.contains(MeshPipelineKey::DEBAND_DITHER) {
shader_defs.push("DEBAND_DITHER".into());
}
}
if key.contains(MeshPipelineKey::MAY_DISCARD) {
shader_defs.push("MAY_DISCARD".into());
}
if key.contains(MeshPipelineKey::ENVIRONMENT_MAP) {
shader_defs.push("ENVIRONMENT_MAP".into());
}
if key.contains(MeshPipelineKey::IRRADIANCE_VOLUME) && IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUME".into());
}
if key.contains(MeshPipelineKey::LIGHTMAPPED) {
shader_defs.push("LIGHTMAP".into());
}
if key.contains(MeshPipelineKey::TEMPORAL_JITTER) {
shader_defs.push("TEMPORAL_JITTER".into());
}
let shadow_filter_method =
key.intersection(MeshPipelineKey::SHADOW_FILTER_METHOD_RESERVED_BITS);
if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_HARDWARE_2X2 {
shader_defs.push("SHADOW_FILTER_METHOD_HARDWARE_2X2".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_GAUSSIAN {
shader_defs.push("SHADOW_FILTER_METHOD_GAUSSIAN".into());
} else if shadow_filter_method == MeshPipelineKey::SHADOW_FILTER_METHOD_TEMPORAL {
shader_defs.push("SHADOW_FILTER_METHOD_TEMPORAL".into());
}
let blur_quality =
key.intersection(MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_RESERVED_BITS);
shader_defs.push(ShaderDefVal::Int(
"SCREEN_SPACE_SPECULAR_TRANSMISSION_BLUR_TAPS".into(),
match blur_quality {
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_LOW => 4,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_MEDIUM => 8,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_HIGH => 16,
MeshPipelineKey::SCREEN_SPACE_SPECULAR_TRANSMISSION_ULTRA => 32,
_ => unreachable!(), // Not possible, since the mask is 2 bits, and we've covered all 4 cases
},
));
if key.contains(MeshPipelineKey::VISIBILITY_RANGE_DITHER) {
shader_defs.push("VISIBILITY_RANGE_DITHER".into());
}
if self.binding_arrays_are_usable {
shader_defs.push("MULTIPLE_LIGHT_PROBES_IN_ARRAY".into());
}
if IRRADIANCE_VOLUMES_ARE_USABLE {
shader_defs.push("IRRADIANCE_VOLUMES_ARE_USABLE".into());
}
let format = if key.contains(MeshPipelineKey::HDR) {
ViewTarget::TEXTURE_FORMAT_HDR
} else {
TextureFormat::bevy_default()
};
// This is defined here so that custom shaders that use something other than
// the mesh binding from bevy_pbr::mesh_bindings can easily make use of this
// in their own shaders.
if let Some(per_object_buffer_batch_size) = self.per_object_buffer_batch_size {
shader_defs.push(ShaderDefVal::UInt(
"PER_OBJECT_BUFFER_BATCH_SIZE".into(),
per_object_buffer_batch_size,
));
}
Ok(RenderPipelineDescriptor {
vertex: VertexState {
shader: MESH_SHADER_HANDLE,
entry_point: "vertex".into(),
shader_defs: shader_defs.clone(),
buffers: vec![vertex_buffer_layout],
},
fragment: Some(FragmentState {
shader: MESH_SHADER_HANDLE,
shader_defs,
entry_point: "fragment".into(),
targets: vec![Some(ColorTargetState {
format,
blend,
write_mask: ColorWrites::ALL,
})],
}),
layout: bind_group_layout,
push_constant_ranges: vec![],
primitive: PrimitiveState {
front_face: FrontFace::Ccw,
cull_mode: Some(Face::Back),
unclipped_depth: false,
polygon_mode: PolygonMode::Fill,
conservative: false,
topology: key.primitive_topology(),
strip_index_format: None,
},
depth_stencil: Some(DepthStencilState {
format: CORE_3D_DEPTH_FORMAT,
depth_write_enabled,
depth_compare: CompareFunction::GreaterEqual,
stencil: StencilState {
front: StencilFaceState::IGNORE,
back: StencilFaceState::IGNORE,
read_mask: 0,
write_mask: 0,
},
bias: DepthBiasState {
constant: 0,
slope_scale: 0.0,
clamp: 0.0,
},
}),
multisample: MultisampleState {
count: key.msaa_samples(),
mask: !0,
alpha_to_coverage_enabled,
},
label: Some(label),
})
}
}
/// Bind groups for meshes currently loaded.
#[derive(Resource, Default)]
pub struct MeshBindGroups {
model_only: Option<BindGroup>,
skinned: Option<MeshBindGroupPair>,
morph_targets: HashMap<AssetId<Mesh>, MeshBindGroupPair>,
lightmaps: HashMap<AssetId<Image>, BindGroup>,
}
pub struct MeshBindGroupPair {
motion_vectors: BindGroup,
no_motion_vectors: BindGroup,
}
impl MeshBindGroups {
pub fn reset(&mut self) {
self.model_only = None;
self.skinned = None;
self.morph_targets.clear();
self.lightmaps.clear();
}
/// Get the `BindGroup` for `RenderMesh` with given `handle_id` and lightmap
/// key `lightmap`.
pub fn get(
&self,
asset_id: AssetId<Mesh>,
lightmap: Option<AssetId<Image>>,
is_skinned: bool,
morph: bool,
motion_vectors: bool,
) -> Option<&BindGroup> {
match (is_skinned, morph, lightmap) {
(_, true, _) => self
.morph_targets
.get(&asset_id)
.map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
(true, false, _) => self
.skinned
.as_ref()
.map(|bind_group_pair| bind_group_pair.get(motion_vectors)),
(false, false, Some(lightmap)) => self.lightmaps.get(&lightmap),
(false, false, None) => self.model_only.as_ref(),
}
}
}
impl MeshBindGroupPair {
fn get(&self, motion_vectors: bool) -> &BindGroup {
if motion_vectors {
&self.motion_vectors
} else {
&self.no_motion_vectors
}
}
}
#[allow(clippy::too_many_arguments)]
pub fn prepare_mesh_bind_group(
meshes: Res<RenderAssets<RenderMesh>>,
images: Res<RenderAssets<GpuImage>>,
mut groups: ResMut<MeshBindGroups>,
mesh_pipeline: Res<MeshPipeline>,
render_device: Res<RenderDevice>,
cpu_batched_instance_buffer: Option<
Res<no_gpu_preprocessing::BatchedInstanceBuffer<MeshUniform>>,
>,
gpu_batched_instance_buffers: Option<
Res<gpu_preprocessing::BatchedInstanceBuffers<MeshUniform, MeshInputUniform>>,
>,
skins_uniform: Res<SkinUniforms>,
weights_uniform: Res<MorphUniforms>,
render_lightmaps: Res<RenderLightmaps>,
) {
groups.reset();
let layouts = &mesh_pipeline.mesh_layouts;
let model = if let Some(cpu_batched_instance_buffer) = cpu_batched_instance_buffer {
cpu_batched_instance_buffer
.into_inner()
.instance_data_binding()
} else if let Some(gpu_batched_instance_buffers) = gpu_batched_instance_buffers {
gpu_batched_instance_buffers
.into_inner()
.instance_data_binding()
} else {
return;
};
let Some(model) = model else { return };
groups.model_only = Some(layouts.model_only(&render_device, &model));
// Create the skinned mesh bind group with the current and previous buffers
// (the latter being for motion vector computation). If there's no previous
// buffer, just use the current one as the shader will ignore it.
let skin = skins_uniform.current_buffer.buffer();
if let Some(skin) = skin {
let prev_skin = skins_uniform.prev_buffer.buffer().unwrap_or(skin);
groups.skinned = Some(MeshBindGroupPair {
motion_vectors: layouts.skinned_motion(&render_device, &model, skin, prev_skin),
no_motion_vectors: layouts.skinned(&render_device, &model, skin),
});
}
// Create the morphed bind groups just like we did for the skinned bind
// group.
if let Some(weights) = weights_uniform.current_buffer.buffer() {
let prev_weights = weights_uniform.prev_buffer.buffer().unwrap_or(weights);
for (id, gpu_mesh) in meshes.iter() {
if let Some(targets) = gpu_mesh.morph_targets.as_ref() {
let bind_group_pair = match skin.filter(|_| is_skinned(&gpu_mesh.layout)) {
Some(skin) => {
let prev_skin = skins_uniform.prev_buffer.buffer().unwrap_or(skin);
MeshBindGroupPair {
motion_vectors: layouts.morphed_skinned_motion(
&render_device,
&model,
skin,
weights,
targets,
prev_skin,
prev_weights,
),
no_motion_vectors: layouts.morphed_skinned(
&render_device,
&model,
skin,
weights,
targets,
),
}
}
None => MeshBindGroupPair {
motion_vectors: layouts.morphed_motion(
&render_device,
&model,
weights,
targets,
prev_weights,
),
no_motion_vectors: layouts.morphed(
&render_device,
&model,
weights,
targets,
),
},
};
groups.morph_targets.insert(id, bind_group_pair);
}
}
}
// Create lightmap bindgroups.
for &image_id in &render_lightmaps.all_lightmap_images {
if let (Entry::Vacant(entry), Some(image)) =
(groups.lightmaps.entry(image_id), images.get(image_id))
{
entry.insert(layouts.lightmapped(&render_device, &model, image));
}
}
}
pub struct SetMeshViewBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshViewBindGroup<I> {
type Param = ();
type ViewQuery = (
Read<ViewUniformOffset>,
Read<ViewLightsUniformOffset>,
Read<ViewFogUniformOffset>,
Read<ViewLightProbesUniformOffset>,
Read<ViewScreenSpaceReflectionsUniformOffset>,
Read<ViewEnvironmentMapUniformOffset>,
Read<MeshViewBindGroup>,
);
type ItemQuery = ();
#[inline]
fn render<'w>(
_item: &P,
(
view_uniform,
view_lights,
view_fog,
view_light_probes,
view_ssr,
view_environment_map,
mesh_view_bind_group,
): ROQueryItem<'w, Self::ViewQuery>,
_entity: Option<()>,
_: SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
pass.set_bind_group(
I,
&mesh_view_bind_group.value,
&[
view_uniform.offset,
view_lights.offset,
view_fog.offset,
**view_light_probes,
**view_ssr,
**view_environment_map,
],
);
RenderCommandResult::Success
}
}
pub struct SetMeshBindGroup<const I: usize>;
impl<P: PhaseItem, const I: usize> RenderCommand<P> for SetMeshBindGroup<I> {
type Param = (
SRes<MeshBindGroups>,
SRes<RenderMeshInstances>,
SRes<SkinIndices>,
SRes<MorphIndices>,
SRes<RenderLightmaps>,
);
type ViewQuery = Has<MotionVectorPrepass>;
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
has_motion_vector_prepass: bool,
_item_query: Option<()>,
(bind_groups, mesh_instances, skin_indices, morph_indices, lightmaps): SystemParamItem<
'w,
'_,
Self::Param,
>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
let bind_groups = bind_groups.into_inner();
let mesh_instances = mesh_instances.into_inner();
let skin_indices = skin_indices.into_inner();
let morph_indices = morph_indices.into_inner();
let entity = &item.entity();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(*entity) else {
return RenderCommandResult::Success;
};
let current_skin_index = skin_indices.current.get(entity);
let prev_skin_index = skin_indices.prev.get(entity);
let current_morph_index = morph_indices.current.get(entity);
let prev_morph_index = morph_indices.prev.get(entity);
let is_skinned = current_skin_index.is_some();
let is_morphed = current_morph_index.is_some();
let lightmap = lightmaps
.render_lightmaps
.get(entity)
.map(|render_lightmap| render_lightmap.image);
let Some(bind_group) = bind_groups.get(
mesh_asset_id,
lightmap,
is_skinned,
is_morphed,
has_motion_vector_prepass,
) else {
return RenderCommandResult::Failure(
"The MeshBindGroups resource wasn't set in the render phase. \
It should be set by the prepare_mesh_bind_group system.\n\
This is a bevy bug! Please open an issue.",
);
};
let mut dynamic_offsets: [u32; 3] = Default::default();
let mut offset_count = 0;
if let Some(dynamic_offset) = item.extra_index().as_dynamic_offset() {
dynamic_offsets[offset_count] = dynamic_offset.get();
offset_count += 1;
}
if let Some(current_skin_index) = current_skin_index {
dynamic_offsets[offset_count] = current_skin_index.index;
offset_count += 1;
}
if let Some(current_morph_index) = current_morph_index {
dynamic_offsets[offset_count] = current_morph_index.index;
offset_count += 1;
}
// Attach motion vectors if needed.
if has_motion_vector_prepass {
// Attach the previous skin index for motion vector computation. If
// there isn't one, just use zero as the shader will ignore it.
if current_skin_index.is_some() {
match prev_skin_index {
Some(prev_skin_index) => dynamic_offsets[offset_count] = prev_skin_index.index,
None => dynamic_offsets[offset_count] = 0,
}
offset_count += 1;
}
// Attach the previous morph index for motion vector computation. If
// there isn't one, just use zero as the shader will ignore it.
if current_morph_index.is_some() {
match prev_morph_index {
Some(prev_morph_index) => {
dynamic_offsets[offset_count] = prev_morph_index.index;
}
None => dynamic_offsets[offset_count] = 0,
}
offset_count += 1;
}
}
pass.set_bind_group(I, bind_group, &dynamic_offsets[0..offset_count]);
RenderCommandResult::Success
}
}
pub struct DrawMesh;
impl<P: PhaseItem> RenderCommand<P> for DrawMesh {
type Param = (
SRes<RenderAssets<RenderMesh>>,
SRes<RenderMeshInstances>,
SRes<IndirectParametersBuffer>,
SRes<PipelineCache>,
SRes<MeshAllocator>,
Option<SRes<PreprocessPipelines>>,
);
type ViewQuery = Has<PreprocessBindGroup>;
type ItemQuery = ();
#[inline]
fn render<'w>(
item: &P,
has_preprocess_bind_group: ROQueryItem<Self::ViewQuery>,
_item_query: Option<()>,
(
meshes,
mesh_instances,
indirect_parameters_buffer,
pipeline_cache,
mesh_allocator,
preprocess_pipelines,
): SystemParamItem<'w, '_, Self::Param>,
pass: &mut TrackedRenderPass<'w>,
) -> RenderCommandResult {
// If we're using GPU preprocessing, then we're dependent on that
// compute shader having been run, which of course can only happen if
// it's compiled. Otherwise, our mesh instance data won't be present.
if let Some(preprocess_pipelines) = preprocess_pipelines {
if !has_preprocess_bind_group
|| !preprocess_pipelines.pipelines_are_loaded(&pipeline_cache)
{
return RenderCommandResult::Skip;
}
}
let meshes = meshes.into_inner();
let mesh_instances = mesh_instances.into_inner();
let indirect_parameters_buffer = indirect_parameters_buffer.into_inner();
let mesh_allocator = mesh_allocator.into_inner();
let Some(mesh_asset_id) = mesh_instances.mesh_asset_id(item.entity()) else {
return RenderCommandResult::Skip;
};
let Some(gpu_mesh) = meshes.get(mesh_asset_id) else {
return RenderCommandResult::Skip;
};
let Some(vertex_buffer_slice) = mesh_allocator.mesh_vertex_slice(&mesh_asset_id) else {
return RenderCommandResult::Skip;
};
// Calculate the indirect offset, and look up the buffer.
let indirect_parameters = match item.extra_index().as_indirect_parameters_index() {
None => None,
Some(index) => match indirect_parameters_buffer.buffer() {
None => {
warn!("Not rendering mesh because indirect parameters buffer wasn't present");
return RenderCommandResult::Skip;
}
Some(buffer) => Some((
index as u64 * size_of::<IndirectParameters>() as u64,
buffer,
)),
},
};
pass.set_vertex_buffer(0, vertex_buffer_slice.buffer.slice(..));
let batch_range = item.batch_range();
// Draw either directly or indirectly, as appropriate.
match &gpu_mesh.buffer_info {
RenderMeshBufferInfo::Indexed {
index_format,
count,
} => {
let Some(index_buffer_slice) = mesh_allocator.mesh_index_slice(&mesh_asset_id)
else {
return RenderCommandResult::Skip;
};
pass.set_index_buffer(index_buffer_slice.buffer.slice(..), 0, *index_format);
match indirect_parameters {
None => {
pass.draw_indexed(
index_buffer_slice.range.start
..(index_buffer_slice.range.start + *count),
vertex_buffer_slice.range.start as i32,
batch_range.clone(),
);
}
Some((indirect_parameters_offset, indirect_parameters_buffer)) => pass
.draw_indexed_indirect(
indirect_parameters_buffer,
indirect_parameters_offset,
),
}
}
RenderMeshBufferInfo::NonIndexed => match indirect_parameters {
None => {
pass.draw(vertex_buffer_slice.range, batch_range.clone());
}
Some((indirect_parameters_offset, indirect_parameters_buffer)) => {
pass.draw_indirect(indirect_parameters_buffer, indirect_parameters_offset);
}
},
}
RenderCommandResult::Success
}
}
#[cfg(test)]
mod tests {
use super::MeshPipelineKey;
#[test]
fn mesh_key_msaa_samples() {
for i in [1, 2, 4, 8, 16, 32, 64, 128] {
assert_eq!(MeshPipelineKey::from_msaa_samples(i).msaa_samples(), i);
}
}
}