bevy/examples/scene/scene.rs
2020-08-03 12:00:00 -07:00

130 lines
5.9 KiB
Rust

use bevy::{prelude::*, type_registry::TypeRegistry};
/// This example illustrates loading and saving scenes from files
fn main() {
App::build()
.add_default_plugins()
// Registering components informs Bevy that they exist. This allows them to be used when loading scenes
// This step is only required if you want to load your components from scene files.
// Unregistered components can still be used in your code, but they will be ignored during scene save/load.
// In the future registering components will also make them usable from the Bevy editor.
// The core Bevy plugins already register their components, so you only need this step for custom components.
.register_component::<ComponentA>()
.register_component::<ComponentB>()
.add_startup_system(save_scene_system.thread_local_system())
.add_startup_system(load_scene_system.system())
.add_system(print_system.system())
.run();
}
// Registered components must implement the `Properties` and `FromResources` traits.
// The `Properties` trait enables serialization, deserialization, dynamic property access, and change detection.
// `Properties` enable a bunch of cool behaviors, so its worth checking out the dedicated `properties.rs` example.
// The `FromResources` trait determines how your component is constructed when it loads. For simple use cases you can just
// implement the `Default` trait (which automatically implements FromResources). The simplest registered component just needs
// these two derives:
#[derive(Properties, Default)]
struct ComponentA {
pub x: f32,
pub y: f32,
}
// Some components have fields that cannot (or should not) be written to scene files. These can be ignored with
// the #[property(ignore)] attribute. This is also generally where the `FromResources` trait comes into play.
// `FromResources` gives you access to your App's current ECS `Resources` when you construct your component.
#[derive(Properties)]
struct ComponentB {
pub value: String,
#[property(ignore)]
pub time_since_startup: std::time::Duration,
}
impl FromResources for ComponentB {
fn from_resources(resources: &Resources) -> Self {
let time = resources.get::<Time>().unwrap();
ComponentB {
time_since_startup: time.time_since_startup(),
value: "Default Value".to_string(),
}
}
}
fn load_scene_system(asset_server: Res<AssetServer>, mut scene_spawner: ResMut<SceneSpawner>) {
// Scenes are loaded just like any other asset.
let scene_handle: Handle<Scene> = asset_server
.load("assets/scenes/load_scene_example.scn")
.unwrap();
// SceneSpawner can "instance" scenes. "instancing" a scene creates a new instance of the scene in the World with new entity ids.
// This guarantees that it will not overwrite existing entities.
scene_spawner.instance(scene_handle);
// SceneSpawner can also "load" scenes. "loading" a scene preserves the entity ids in the scene.
// In general, you should "instance" scenes when you are dynamically composing your World and "load" scenes for things like game saves.
scene_spawner.load(scene_handle);
// we have now loaded `scene_handle` AND instanced it, which means our World now has one set of entities with the Scene's ids and
// one set of entities with new ids
// This tells the AssetServer to watch for changes to assets.
// It enables our scenes to automatically reload in game when we modify their files
asset_server.watch_for_changes().unwrap();
}
// Using SceneSpawner instance() and load() queues them up to be added to the World at the beginning of the next update. However if
// you need scenes to load immediately, you can use the following approach. But be aware that this takes full control of the ECS world
// and therefore blocks other parallel systems from executing until it finishes. In most cases you should use the SceneSpawner
// instance() and load() methods.
#[allow(dead_code)]
fn load_scene_right_now_system(world: &mut World, resources: &mut Resources) {
let scene_handle: Handle<Scene> = {
let asset_server = resources.get::<AssetServer>().unwrap();
let mut scenes = resources.get_mut::<Assets<Scene>>().unwrap();
asset_server
.load_sync(&mut scenes, "assets/scenes/load_scene_example.scn")
.unwrap()
};
let mut scene_spawner = resources.get_mut::<SceneSpawner>().unwrap();
scene_spawner
.load_sync(world, resources, scene_handle)
.unwrap();
}
// This system prints all ComponentA components in our world. Try making a change to a ComponentA in load_scene_example.scn.
// You should immediately see the changes appear in the console.
fn print_system(mut query: Query<(Entity, Changed<ComponentA>)>) {
for (entity, component_a) in &mut query.iter() {
println!(" Entity({})", entity.id());
println!(
" ComponentA: {{ x: {} y: {} }}\n",
component_a.x, component_a.y
);
}
}
fn save_scene_system(_world: &mut World, resources: &mut Resources) {
// Scenes can be created from any ECS World. You can either create a new one for the scene or use the current World.
let mut world = World::new();
world.spawn((
ComponentA { x: 1.0, y: 2.0 },
ComponentB {
value: "hello".to_string(),
..ComponentB::from_resources(resources)
},
));
world.spawn((ComponentA { x: 3.0, y: 4.0 },));
// The component registry resource contains information about all registered components. This is used to construct scenes.
let type_registry = resources.get::<TypeRegistry>().unwrap();
let scene = Scene::from_world(&world, &type_registry.component.read().unwrap());
// Scenes can be serialized like this:
println!(
"{}",
scene
.serialize_ron(&type_registry.property.read().unwrap())
.unwrap()
);
// TODO: save scene
}