bevy/crates/bevy_ecs/src/schedule/state.rs
ira 992681b59b Make Resource trait opt-in, requiring #[derive(Resource)] V2 (#5577)
*This PR description is an edited copy of #5007, written by @alice-i-cecile.*
# Objective
Follow-up to https://github.com/bevyengine/bevy/pull/2254. The `Resource` trait currently has a blanket implementation for all types that meet its bounds.

While ergonomic, this results in several drawbacks:

* it is possible to make confusing, silent mistakes such as inserting a function pointer (Foo) rather than a value (Foo::Bar) as a resource
* it is challenging to discover if a type is intended to be used as a resource
* we cannot later add customization options (see the [RFC](https://github.com/bevyengine/rfcs/blob/main/rfcs/27-derive-component.md) for the equivalent choice for Component).
* dependencies can use the same Rust type as a resource in invisibly conflicting ways
* raw Rust types used as resources cannot preserve privacy appropriately, as anyone able to access that type can read and write to internal values
* we cannot capture a definitive list of possible resources to display to users in an editor
## Notes to reviewers
 * Review this commit-by-commit; there's effectively no back-tracking and there's a lot of churn in some of these commits.
   *ira: My commits are not as well organized :')*
 * I've relaxed the bound on Local to Send + Sync + 'static: I don't think these concerns apply there, so this can keep things simple. Storing e.g. a u32 in a Local is fine, because there's a variable name attached explaining what it does.
 * I think this is a bad place for the Resource trait to live, but I've left it in place to make reviewing easier. IMO that's best tackled with https://github.com/bevyengine/bevy/issues/4981.

## Changelog
`Resource` is no longer automatically implemented for all matching types. Instead, use the new `#[derive(Resource)]` macro.

## Migration Guide
Add `#[derive(Resource)]` to all types you are using as a resource.

If you are using a third party type as a resource, wrap it in a tuple struct to bypass orphan rules. Consider deriving `Deref` and `DerefMut` to improve ergonomics.

`ClearColor` no longer implements `Component`. Using `ClearColor` as a component in 0.8 did nothing.
Use the `ClearColorConfig` in the `Camera3d` and `Camera2d` components instead.


Co-authored-by: Alice <alice.i.cecile@gmail.com>
Co-authored-by: Alice Cecile <alice.i.cecile@gmail.com>
Co-authored-by: devil-ira <justthecooldude@gmail.com>
Co-authored-by: Carter Anderson <mcanders1@gmail.com>
2022-08-08 21:36:35 +00:00

751 lines
24 KiB
Rust

use crate::{
schedule::{
RunCriteriaDescriptor, RunCriteriaDescriptorCoercion, RunCriteriaLabel, ShouldRun,
SystemSet,
},
system::{In, IntoChainSystem, Local, Res, ResMut, Resource},
};
use std::{
any::TypeId,
fmt::{self, Debug},
hash::Hash,
};
// Required for derive macros
use crate as bevy_ecs;
pub trait StateData: Send + Sync + Clone + Eq + Debug + Hash + 'static {}
impl<T> StateData for T where T: Send + Sync + Clone + Eq + Debug + Hash + 'static {}
/// ### Stack based state machine
///
/// This state machine has four operations: Push, Pop, Set and Replace.
/// * Push pushes a new state to the state stack, pausing the previous state
/// * Pop removes the current state, and unpauses the last paused state
/// * Set replaces the active state with a new one
/// * Replace unwinds the state stack, and replaces the entire stack with a single new state
#[derive(Debug, Resource)]
pub struct State<T: StateData> {
transition: Option<StateTransition<T>>,
/// The current states in the stack.
///
/// There is always guaranteed to be at least one.
stack: Vec<T>,
scheduled: Option<ScheduledOperation<T>>,
end_next_loop: bool,
}
#[derive(Debug)]
enum StateTransition<T: StateData> {
PreStartup,
Startup,
// The parameter order is always (leaving, entering)
ExitingToResume(T, T),
ExitingFull(T, T),
Entering(T, T),
Resuming(T, T),
Pausing(T, T),
}
#[derive(Debug)]
enum ScheduledOperation<T: StateData> {
Set(T),
Replace(T),
Pop,
Push(T),
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
struct DriverLabel(TypeId, &'static str);
impl RunCriteriaLabel for DriverLabel {
fn type_id(&self) -> core::any::TypeId {
self.0
}
fn as_str(&self) -> &'static str {
self.1
}
}
impl DriverLabel {
fn of<T: 'static>() -> Self {
Self(TypeId::of::<T>(), std::any::type_name::<T>())
}
}
impl<T> State<T>
where
T: StateData,
{
pub fn on_update(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>| {
state.stack.last().unwrap() == &pred && state.transition.is_none()
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_inactive_update(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>, mut is_inactive: Local<bool>| match &state.transition {
Some(StateTransition::Pausing(ref relevant, _))
| Some(StateTransition::Resuming(_, ref relevant)) => {
if relevant == &pred {
*is_inactive = !*is_inactive;
}
false
}
Some(_) => false,
None => *is_inactive,
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_in_stack_update(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>, mut is_in_stack: Local<bool>| match &state.transition {
Some(StateTransition::Entering(ref relevant, _))
| Some(StateTransition::ExitingToResume(_, ref relevant))
| Some(StateTransition::ExitingFull(_, ref relevant)) => {
if relevant == &pred {
*is_in_stack = !*is_in_stack;
}
false
}
Some(StateTransition::Startup) => {
if state.stack.last().unwrap() == &pred {
*is_in_stack = !*is_in_stack;
}
false
}
Some(_) => false,
None => *is_in_stack,
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_enter(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>| {
state
.transition
.as_ref()
.map_or(false, |transition| match transition {
StateTransition::Entering(_, entering) => entering == &pred,
StateTransition::Startup => state.stack.last().unwrap() == &pred,
_ => false,
})
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_exit(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>| {
state
.transition
.as_ref()
.map_or(false, |transition| match transition {
StateTransition::ExitingToResume(exiting, _)
| StateTransition::ExitingFull(exiting, _) => exiting == &pred,
_ => false,
})
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_pause(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>| {
state
.transition
.as_ref()
.map_or(false, |transition| match transition {
StateTransition::Pausing(pausing, _) => pausing == &pred,
_ => false,
})
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_resume(pred: T) -> RunCriteriaDescriptor {
(move |state: Res<State<T>>| {
state
.transition
.as_ref()
.map_or(false, |transition| match transition {
StateTransition::Resuming(_, resuming) => resuming == &pred,
_ => false,
})
})
.chain(should_run_adapter::<T>)
.after(DriverLabel::of::<T>())
}
pub fn on_update_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_update(s))
}
pub fn on_inactive_update_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_inactive_update(s))
}
pub fn on_enter_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_enter(s))
}
pub fn on_exit_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_exit(s))
}
pub fn on_pause_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_pause(s))
}
pub fn on_resume_set(s: T) -> SystemSet {
SystemSet::new().with_run_criteria(Self::on_resume(s))
}
/// Creates a driver set for the State.
///
/// Important note: this set must be inserted **before** all other state-dependant sets to work
/// properly!
pub fn get_driver() -> SystemSet {
SystemSet::default().with_run_criteria(state_cleaner::<T>.label(DriverLabel::of::<T>()))
}
pub fn new(initial: T) -> Self {
Self {
stack: vec![initial],
transition: Some(StateTransition::PreStartup),
scheduled: None,
end_next_loop: false,
}
}
/// Schedule a state change that replaces the active state with the given state.
/// This will fail if there is a scheduled operation, pending transition, or if the given
/// `state` matches the current state
pub fn set(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
if self.scheduled.is_some() || self.transition.is_some() {
return Err(StateError::StateAlreadyQueued);
}
self.scheduled = Some(ScheduledOperation::Set(state));
Ok(())
}
/// Same as [`Self::set`], but if there is already a next state, it will be overwritten
/// instead of failing
pub fn overwrite_set(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
self.scheduled = Some(ScheduledOperation::Set(state));
Ok(())
}
/// Schedule a state change that replaces the full stack with the given state.
/// This will fail if there is a scheduled operation, pending transition, or if the given
/// `state` matches the current state
pub fn replace(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
if self.scheduled.is_some() || self.transition.is_some() {
return Err(StateError::StateAlreadyQueued);
}
self.scheduled = Some(ScheduledOperation::Replace(state));
Ok(())
}
/// Same as [`Self::replace`], but if there is already a next state, it will be overwritten
/// instead of failing
pub fn overwrite_replace(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
self.scheduled = Some(ScheduledOperation::Replace(state));
Ok(())
}
/// Same as [`Self::set`], but does a push operation instead of a next operation
pub fn push(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
if self.scheduled.is_some() || self.transition.is_some() {
return Err(StateError::StateAlreadyQueued);
}
self.scheduled = Some(ScheduledOperation::Push(state));
Ok(())
}
/// Same as [`Self::push`], but if there is already a next state, it will be overwritten
/// instead of failing
pub fn overwrite_push(&mut self, state: T) -> Result<(), StateError> {
if self.stack.last().unwrap() == &state {
return Err(StateError::AlreadyInState);
}
self.scheduled = Some(ScheduledOperation::Push(state));
Ok(())
}
/// Same as [`Self::set`], but does a pop operation instead of a set operation
pub fn pop(&mut self) -> Result<(), StateError> {
if self.scheduled.is_some() || self.transition.is_some() {
return Err(StateError::StateAlreadyQueued);
}
if self.stack.len() == 1 {
return Err(StateError::StackEmpty);
}
self.scheduled = Some(ScheduledOperation::Pop);
Ok(())
}
/// Same as [`Self::pop`], but if there is already a next state, it will be overwritten
/// instead of failing
pub fn overwrite_pop(&mut self) -> Result<(), StateError> {
if self.stack.len() == 1 {
return Err(StateError::StackEmpty);
}
self.scheduled = Some(ScheduledOperation::Pop);
Ok(())
}
/// Schedule a state change that restarts the active state.
/// This will fail if there is a scheduled operation or a pending transition
pub fn restart(&mut self) -> Result<(), StateError> {
if self.scheduled.is_some() || self.transition.is_some() {
return Err(StateError::StateAlreadyQueued);
}
let state = self.stack.last().unwrap();
self.scheduled = Some(ScheduledOperation::Set(state.clone()));
Ok(())
}
/// Same as [`Self::restart`], but if there is already a scheduled state operation,
/// it will be overwritten instead of failing
pub fn overwrite_restart(&mut self) {
let state = self.stack.last().unwrap();
self.scheduled = Some(ScheduledOperation::Set(state.clone()));
}
pub fn current(&self) -> &T {
self.stack.last().unwrap()
}
pub fn inactives(&self) -> &[T] {
self.stack.split_last().map(|(_, rest)| rest).unwrap()
}
/// Clears the scheduled state operation.
pub fn clear_schedule(&mut self) {
self.scheduled = None;
}
}
#[derive(Debug)]
pub enum StateError {
AlreadyInState,
StateAlreadyQueued,
StackEmpty,
}
impl std::error::Error for StateError {}
impl fmt::Display for StateError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
match self {
StateError::AlreadyInState => {
write!(f, "Attempted to change the state to the current state.")
}
StateError::StateAlreadyQueued => write!(
f,
"Attempted to queue a state change, but there was already a state queued."
),
StateError::StackEmpty => {
write!(f, "Attempted to queue a pop, but there is nothing to pop.")
}
}
}
}
fn should_run_adapter<T: StateData>(In(cmp_result): In<bool>, state: Res<State<T>>) -> ShouldRun {
if state.end_next_loop {
return ShouldRun::No;
}
if cmp_result {
ShouldRun::YesAndCheckAgain
} else {
ShouldRun::NoAndCheckAgain
}
}
fn state_cleaner<T: StateData>(
mut state: ResMut<State<T>>,
mut prep_exit: Local<bool>,
) -> ShouldRun {
if *prep_exit {
*prep_exit = false;
if state.scheduled.is_none() {
state.end_next_loop = true;
return ShouldRun::YesAndCheckAgain;
}
} else if state.end_next_loop {
state.end_next_loop = false;
return ShouldRun::No;
}
match state.scheduled.take() {
Some(ScheduledOperation::Set(next)) => {
state.transition = Some(StateTransition::ExitingFull(
state.stack.last().unwrap().clone(),
next,
));
}
Some(ScheduledOperation::Replace(next)) => {
if state.stack.len() <= 1 {
state.transition = Some(StateTransition::ExitingFull(
state.stack.last().unwrap().clone(),
next,
));
} else {
state.scheduled = Some(ScheduledOperation::Replace(next));
match state.transition.take() {
Some(StateTransition::ExitingToResume(p, n)) => {
state.stack.pop();
state.transition = Some(StateTransition::Resuming(p, n));
}
_ => {
state.transition = Some(StateTransition::ExitingToResume(
state.stack[state.stack.len() - 1].clone(),
state.stack[state.stack.len() - 2].clone(),
));
}
}
}
}
Some(ScheduledOperation::Push(next)) => {
let last_type_id = state.stack.last().unwrap().clone();
state.transition = Some(StateTransition::Pausing(last_type_id, next));
}
Some(ScheduledOperation::Pop) => {
state.transition = Some(StateTransition::ExitingToResume(
state.stack[state.stack.len() - 1].clone(),
state.stack[state.stack.len() - 2].clone(),
));
}
None => match state.transition.take() {
Some(StateTransition::ExitingFull(p, n)) => {
state.transition = Some(StateTransition::Entering(p, n.clone()));
*state.stack.last_mut().unwrap() = n;
}
Some(StateTransition::Pausing(p, n)) => {
state.transition = Some(StateTransition::Entering(p, n.clone()));
state.stack.push(n);
}
Some(StateTransition::ExitingToResume(p, n)) => {
state.stack.pop();
state.transition = Some(StateTransition::Resuming(p, n));
}
Some(StateTransition::PreStartup) => {
state.transition = Some(StateTransition::Startup);
}
_ => {}
},
};
if state.transition.is_none() {
*prep_exit = true;
}
ShouldRun::YesAndCheckAgain
}
#[cfg(test)]
mod test {
use super::*;
use crate::prelude::*;
#[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
enum MyState {
S1,
S2,
S3,
S4,
S5,
S6,
Final,
}
#[test]
fn state_test() {
#[derive(Resource, Default)]
struct NameList(Vec<&'static str>);
let mut world = World::default();
world.init_resource::<NameList>();
world.insert_resource(State::new(MyState::S1));
let mut stage = SystemStage::parallel();
stage.add_system_set(State::<MyState>::get_driver());
stage
.add_system_set(
State::on_enter_set(MyState::S1)
.with_system(|mut r: ResMut<NameList>| r.0.push("startup")),
)
.add_system_set(State::on_update_set(MyState::S1).with_system(
|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S1");
s.overwrite_replace(MyState::S2).unwrap();
},
))
.add_system_set(
State::on_enter_set(MyState::S2)
.with_system(|mut r: ResMut<NameList>| r.0.push("enter S2")),
)
.add_system_set(State::on_update_set(MyState::S2).with_system(
|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S2");
s.overwrite_replace(MyState::S3).unwrap();
},
))
.add_system_set(
State::on_exit_set(MyState::S2)
.with_system(|mut r: ResMut<NameList>| r.0.push("exit S2")),
)
.add_system_set(
State::on_enter_set(MyState::S3)
.with_system(|mut r: ResMut<NameList>| r.0.push("enter S3")),
)
.add_system_set(State::on_update_set(MyState::S3).with_system(
|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S3");
s.overwrite_push(MyState::S4).unwrap();
},
))
.add_system_set(
State::on_pause_set(MyState::S3)
.with_system(|mut r: ResMut<NameList>| r.0.push("pause S3")),
)
.add_system_set(State::on_update_set(MyState::S4).with_system(
|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S4");
s.overwrite_push(MyState::S5).unwrap();
},
))
.add_system_set(State::on_inactive_update_set(MyState::S4).with_system(
(|mut r: ResMut<NameList>| r.0.push("inactive S4")).label("inactive s4"),
))
.add_system_set(
State::on_update_set(MyState::S5).with_system(
(|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S5");
s.overwrite_push(MyState::S6).unwrap();
})
.after("inactive s4"),
),
)
.add_system_set(
State::on_inactive_update_set(MyState::S5).with_system(
(|mut r: ResMut<NameList>| r.0.push("inactive S5"))
.label("inactive s5")
.after("inactive s4"),
),
)
.add_system_set(
State::on_update_set(MyState::S6).with_system(
(|mut r: ResMut<NameList>, mut s: ResMut<State<MyState>>| {
r.0.push("update S6");
s.overwrite_push(MyState::Final).unwrap();
})
.after("inactive s5"),
),
)
.add_system_set(
State::on_resume_set(MyState::S4)
.with_system(|mut r: ResMut<NameList>| r.0.push("resume S4")),
)
.add_system_set(
State::on_exit_set(MyState::S5)
.with_system(|mut r: ResMut<NameList>| r.0.push("exit S4")),
);
const EXPECTED: &[&str] = &[
//
"startup",
"update S1",
//
"enter S2",
"update S2",
//
"exit S2",
"enter S3",
"update S3",
//
"pause S3",
"update S4",
//
"inactive S4",
"update S5",
//
"inactive S4",
"inactive S5",
"update S6",
//
"inactive S4",
"inactive S5",
];
stage.run(&mut world);
let mut collected = world.resource_mut::<NameList>();
let mut count = 0;
for (found, expected) in collected.0.drain(..).zip(EXPECTED) {
assert_eq!(found, *expected);
count += 1;
}
// If not equal, some elements weren't executed
assert_eq!(EXPECTED.len(), count);
assert_eq!(
world.resource::<State<MyState>>().current(),
&MyState::Final
);
}
#[test]
fn issue_1753() {
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
enum AppState {
Main,
}
#[derive(Resource)]
struct Flag(bool);
#[derive(Resource)]
struct Name(&'static str);
fn should_run_once(mut flag: ResMut<Flag>, test_name: Res<Name>) {
assert!(!flag.0, "{:?}", test_name.0);
flag.0 = true;
}
let mut world = World::new();
world.insert_resource(State::new(AppState::Main));
world.insert_resource(Flag(false));
world.insert_resource(Name("control"));
let mut stage = SystemStage::parallel().with_system(should_run_once);
stage.run(&mut world);
assert!(world.resource::<Flag>().0, "after control");
world.insert_resource(Flag(false));
world.insert_resource(Name("test"));
let mut stage = SystemStage::parallel()
.with_system_set(State::<AppState>::get_driver())
.with_system(should_run_once);
stage.run(&mut world);
assert!(world.resource::<Flag>().0, "after test");
}
#[test]
fn restart_state_tests() {
#[derive(Clone, PartialEq, Eq, Debug, Hash)]
enum LoadState {
Load,
Finish,
}
#[derive(PartialEq, Eq, Debug)]
enum LoadStatus {
EnterLoad,
ExitLoad,
EnterFinish,
}
#[derive(Resource, Default)]
struct LoadStatusStack(Vec<LoadStatus>);
let mut world = World::new();
world.init_resource::<LoadStatusStack>();
world.insert_resource(State::new(LoadState::Load));
let mut stage = SystemStage::parallel();
stage.add_system_set(State::<LoadState>::get_driver());
// Systems to track loading status
stage
.add_system_set(
State::on_enter_set(LoadState::Load)
.with_system(|mut r: ResMut<LoadStatusStack>| r.0.push(LoadStatus::EnterLoad)),
)
.add_system_set(
State::on_exit_set(LoadState::Load)
.with_system(|mut r: ResMut<LoadStatusStack>| r.0.push(LoadStatus::ExitLoad)),
)
.add_system_set(
State::on_enter_set(LoadState::Finish).with_system(
|mut r: ResMut<LoadStatusStack>| r.0.push(LoadStatus::EnterFinish),
),
);
stage.run(&mut world);
// A. Restart state
let mut state = world.resource_mut::<State<LoadState>>();
let result = state.restart();
assert!(matches!(result, Ok(())));
stage.run(&mut world);
// B. Restart state (overwrite schedule)
let mut state = world.resource_mut::<State<LoadState>>();
state.set(LoadState::Finish).unwrap();
state.overwrite_restart();
stage.run(&mut world);
// C. Fail restart state (transition already scheduled)
let mut state = world.resource_mut::<State<LoadState>>();
state.set(LoadState::Finish).unwrap();
let result = state.restart();
assert!(matches!(result, Err(StateError::StateAlreadyQueued)));
stage.run(&mut world);
const EXPECTED: &[LoadStatus] = &[
LoadStatus::EnterLoad,
// A
LoadStatus::ExitLoad,
LoadStatus::EnterLoad,
// B
LoadStatus::ExitLoad,
LoadStatus::EnterLoad,
// C
LoadStatus::ExitLoad,
LoadStatus::EnterFinish,
];
let mut collected = world.resource_mut::<LoadStatusStack>();
let mut count = 0;
for (found, expected) in collected.0.drain(..).zip(EXPECTED) {
assert_eq!(found, *expected);
count += 1;
}
// If not equal, some elements weren't executed
assert_eq!(EXPECTED.len(), count);
assert_eq!(
world.resource::<State<LoadState>>().current(),
&LoadState::Finish
);
}
}