bevy/crates/bevy_render/src/render_asset.rs
Bruce Mitchener ae95ba5278
Fix typos. (#9922)
# Objective

- Have docs with fewer typos.1

## Solution

- Fix typos as they are found.
2023-09-25 18:35:46 +00:00

246 lines
8.7 KiB
Rust

use crate::{Extract, ExtractSchedule, Render, RenderApp, RenderSet};
use bevy_app::{App, Plugin};
use bevy_asset::{Asset, AssetEvent, AssetId, Assets};
use bevy_ecs::{
prelude::*,
schedule::SystemConfigs,
system::{StaticSystemParam, SystemParam, SystemParamItem},
};
use bevy_utils::{HashMap, HashSet};
use std::marker::PhantomData;
pub enum PrepareAssetError<E: Send + Sync + 'static> {
RetryNextUpdate(E),
}
/// Describes how an asset gets extracted and prepared for rendering.
///
/// In the [`ExtractSchedule`](crate::ExtractSchedule) step the asset is transferred
/// from the "main world" into the "render world".
/// Therefore it is converted into a [`RenderAsset::ExtractedAsset`], which may be the same type
/// as the render asset itself.
///
/// After that in the [`RenderSet::PrepareAssets`](crate::RenderSet::PrepareAssets) step the extracted asset
/// is transformed into its GPU-representation of type [`RenderAsset::PreparedAsset`].
pub trait RenderAsset: Asset {
/// The representation of the asset in the "render world".
type ExtractedAsset: Send + Sync + 'static;
/// The GPU-representation of the asset.
type PreparedAsset: Send + Sync + 'static;
/// Specifies all ECS data required by [`RenderAsset::prepare_asset`].
/// For convenience use the [`lifetimeless`](bevy_ecs::system::lifetimeless) [`SystemParam`].
type Param: SystemParam;
/// Converts the asset into a [`RenderAsset::ExtractedAsset`].
fn extract_asset(&self) -> Self::ExtractedAsset;
/// Prepares the `extracted asset` for the GPU by transforming it into
/// a [`RenderAsset::PreparedAsset`]. Therefore ECS data may be accessed via the `param`.
fn prepare_asset(
extracted_asset: Self::ExtractedAsset,
param: &mut SystemParamItem<Self::Param>,
) -> Result<Self::PreparedAsset, PrepareAssetError<Self::ExtractedAsset>>;
}
/// This plugin extracts the changed assets from the "app world" into the "render world"
/// and prepares them for the GPU. They can then be accessed from the [`RenderAssets`] resource.
///
/// Therefore it sets up the [`ExtractSchedule`](crate::ExtractSchedule) and
/// [`RenderSet::PrepareAssets`](crate::RenderSet::PrepareAssets) steps for the specified [`RenderAsset`].
///
/// The `AFTER` generic parameter can be used to specify that `A::prepare_asset` should not be run until
/// `prepare_assets::<AFTER>` has completed. This allows the `prepare_asset` function to depend on another
/// prepared [`RenderAsset`], for example `Mesh::prepare_asset` relies on `RenderAssets::<Image>` for morph
/// targets, so the plugin is created as `RenderAssetPlugin::<Mesh, Image>::default()`.
pub struct RenderAssetPlugin<A: RenderAsset, AFTER: RenderAssetDependency + 'static = ()> {
phantom: PhantomData<fn() -> (A, AFTER)>,
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Default
for RenderAssetPlugin<A, AFTER>
{
fn default() -> Self {
Self {
phantom: Default::default(),
}
}
}
impl<A: RenderAsset, AFTER: RenderAssetDependency + 'static> Plugin
for RenderAssetPlugin<A, AFTER>
{
fn build(&self, app: &mut App) {
if let Ok(render_app) = app.get_sub_app_mut(RenderApp) {
render_app
.init_resource::<ExtractedAssets<A>>()
.init_resource::<RenderAssets<A>>()
.init_resource::<PrepareNextFrameAssets<A>>()
.add_systems(ExtractSchedule, extract_render_asset::<A>);
AFTER::register_system(
render_app,
prepare_assets::<A>.in_set(RenderSet::PrepareAssets),
);
}
}
}
// helper to allow specifying dependencies between render assets
pub trait RenderAssetDependency {
fn register_system(render_app: &mut App, system: SystemConfigs);
}
impl RenderAssetDependency for () {
fn register_system(render_app: &mut App, system: SystemConfigs) {
render_app.add_systems(Render, system);
}
}
impl<A: RenderAsset> RenderAssetDependency for A {
fn register_system(render_app: &mut App, system: SystemConfigs) {
render_app.add_systems(Render, system.after(prepare_assets::<A>));
}
}
/// Temporarily stores the extracted and removed assets of the current frame.
#[derive(Resource)]
pub struct ExtractedAssets<A: RenderAsset> {
extracted: Vec<(AssetId<A>, A::ExtractedAsset)>,
removed: Vec<AssetId<A>>,
}
impl<A: RenderAsset> Default for ExtractedAssets<A> {
fn default() -> Self {
Self {
extracted: Default::default(),
removed: Default::default(),
}
}
}
/// Stores all GPU representations ([`RenderAsset::PreparedAssets`](RenderAsset::PreparedAsset))
/// of [`RenderAssets`](RenderAsset) as long as they exist.
#[derive(Resource)]
pub struct RenderAssets<A: RenderAsset>(HashMap<AssetId<A>, A::PreparedAsset>);
impl<A: RenderAsset> Default for RenderAssets<A> {
fn default() -> Self {
Self(Default::default())
}
}
impl<A: RenderAsset> RenderAssets<A> {
pub fn get(&self, id: impl Into<AssetId<A>>) -> Option<&A::PreparedAsset> {
self.0.get(&id.into())
}
pub fn get_mut(&mut self, id: impl Into<AssetId<A>>) -> Option<&mut A::PreparedAsset> {
self.0.get_mut(&id.into())
}
pub fn insert(
&mut self,
id: impl Into<AssetId<A>>,
value: A::PreparedAsset,
) -> Option<A::PreparedAsset> {
self.0.insert(id.into(), value)
}
pub fn remove(&mut self, id: impl Into<AssetId<A>>) -> Option<A::PreparedAsset> {
self.0.remove(&id.into())
}
pub fn iter(&self) -> impl Iterator<Item = (AssetId<A>, &A::PreparedAsset)> {
self.0.iter().map(|(k, v)| (*k, v))
}
pub fn iter_mut(&mut self) -> impl Iterator<Item = (AssetId<A>, &mut A::PreparedAsset)> {
self.0.iter_mut().map(|(k, v)| (*k, v))
}
}
/// This system extracts all created or modified assets of the corresponding [`RenderAsset`] type
/// into the "render world".
fn extract_render_asset<A: RenderAsset>(
mut commands: Commands,
mut events: Extract<EventReader<AssetEvent<A>>>,
assets: Extract<Res<Assets<A>>>,
) {
let mut changed_assets = HashSet::default();
let mut removed = Vec::new();
for event in events.read() {
match event {
AssetEvent::Added { id } | AssetEvent::Modified { id } => {
changed_assets.insert(*id);
}
AssetEvent::Removed { id } => {
changed_assets.remove(id);
removed.push(*id);
}
AssetEvent::LoadedWithDependencies { .. } => {
// TODO: handle this
}
}
}
let mut extracted_assets = Vec::new();
for id in changed_assets.drain() {
if let Some(asset) = assets.get(id) {
extracted_assets.push((id, asset.extract_asset()));
}
}
commands.insert_resource(ExtractedAssets {
extracted: extracted_assets,
removed,
});
}
// TODO: consider storing inside system?
/// All assets that should be prepared next frame.
#[derive(Resource)]
pub struct PrepareNextFrameAssets<A: RenderAsset> {
assets: Vec<(AssetId<A>, A::ExtractedAsset)>,
}
impl<A: RenderAsset> Default for PrepareNextFrameAssets<A> {
fn default() -> Self {
Self {
assets: Default::default(),
}
}
}
/// This system prepares all assets of the corresponding [`RenderAsset`] type
/// which where extracted this frame for the GPU.
pub fn prepare_assets<R: RenderAsset>(
mut extracted_assets: ResMut<ExtractedAssets<R>>,
mut render_assets: ResMut<RenderAssets<R>>,
mut prepare_next_frame: ResMut<PrepareNextFrameAssets<R>>,
param: StaticSystemParam<<R as RenderAsset>::Param>,
) {
let mut param = param.into_inner();
let queued_assets = std::mem::take(&mut prepare_next_frame.assets);
for (id, extracted_asset) in queued_assets {
match R::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
}
}
for removed in std::mem::take(&mut extracted_assets.removed) {
render_assets.remove(removed);
}
for (id, extracted_asset) in std::mem::take(&mut extracted_assets.extracted) {
match R::prepare_asset(extracted_asset, &mut param) {
Ok(prepared_asset) => {
render_assets.insert(id, prepared_asset);
}
Err(PrepareAssetError::RetryNextUpdate(extracted_asset)) => {
prepare_next_frame.assets.push((id, extracted_asset));
}
}
}
}